a2 United States Patent

Nakamura

US009098226B2

US 9,098,226 B2
*Aug. 4, 2015

(10) Patent No.:
(45) Date of Patent:

(54)
(71)
(72)
(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

EPOS PRINTING OVER A NETWORK

Applicant: Seiko Epson Corporation, Tokyo (JP)

Inventor: Hideo Nakamura, Nagano-ken (JP)
Assignee: Seiko Epson Corporation, Tokyo (JP)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 24 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/955,344

Filed: Jul. 31, 2013
Prior Publication Data
US 2014/0049791 Al Feb. 20, 2014

Related U.S. Application Data

Provisional application No. 61/683,009, filed on Aug.
14, 2012.

Int. Cl1.

GO6F 3/12 (2006.01)

GO6F 9/455 (2006.01)

U.S. CL

CPC GO6F 3/1298 (2013.01); GO6F 3/1207

(2013.01); GOGF 3/1228 (2013.01); GO6F
3/1229 (2013.01); GO6F 3/1237 (2013.01);
GO6F 3/1288 (2013.01); GOGF 9/45512
(2013.01)
Field of Classification Search
CPC ... GO6F 3/1298; GOG6F 3/1288; GOGF 3/1228;
GOGF 3/1229; GOGF 3/1237; GOGF 3/1207,
GOGF 9/45512
USPC e 358/1.13,1.15
See application file for complete search history.

~33

(56) References Cited

U.S. PATENT DOCUMENTS

8,040,356 B2* 10/2011 Stokesccccocovvvnenee 345/594

8,547,575 B2* 10/2013 Mohammad et al. .. 358/1.15
2002/0054303 Al* 52002 Matsuyama 358/1.2
2002/0083438 Al* 6/2002 Soetal. ...cceoervrnreene. 725/31
2003/0225894 Al 12/2003 TIto
2004/0090643 Al* 5/2004 Ochi ...ccccoovvvvvviniinens 358/1.13
2004/0130744 Al* 7/2004 Wuetal. 358/1.15
2005/0138117 Al* 6/2005 Chaneyetal. 709/203
2009/0106456 Al* 4/2009 Muller etal.c........ 710/5
2011/0035625 Al* 2/2011 Kanamori 714/16
2011/0299110 Al* 12/2011 Jazayerietal. ... 358/1.15

(Continued)

FOREIGN PATENT DOCUMENTS

JP 2004-005348 A
WO 2012/108547 A2

1/2004
8/2012

Primary Examiner — Benny Q Tieu
Assistant Examiner — Quyen V Ngo

&7

A script language compatible with HTML is used to define
methods or objects capable of communicating directly with
an intelligent module for printing operations without going
through a web browser’s print selection option. A print API
library provides the needed methods/objects for embedding
into a web page. The intelligent module may be a stand-alone
electronic device, or may be an intelligent device incorpo-
rated into a printer. The intelligent module may manage mul-
tiple printers directly or through a network, and it functions to
provide a communication bridge for translating/conveying
communication between the print APIs on a web page and a
target printer. The print API knows the fixed IP address of the
intelligent module, and define a print document or print com-
mands and send it directly to the intelligent module by means
of the known IP address.

ABSTRACT

20 Claims, 85 Drawing Sheets

I
WEB BROWSER

||| ¥lBf bitp://Addr.net || Tools JiHistoryll] Help

35 31

Web Page

HTML Code
A
APT_

(PrinterID 1)

APL 2
(TP ADDR |}
(PrinterlD_1)

([P ADDR 1) é-ﬁrPrintﬁScriptﬁAppﬁl i«

)\ POS
<[t PRINTER
) (PrinterTD_1)

Intelligent Module | 37
(1P ADDR 1) L/

]

APl 3
) (’IP‘ADDR 1) POS
(PrinterID 2) PRINTER
(PrinterTD_2)

43

US 9,098,226 B2

Page 2
(56) References Cited * cited by examiner
U.S. PATENT DOCUMENTS
2012/0050795 Al 3/2012 Nakamura
2013/0003106 Al* 1/2013 Nishidaetal. 358/1.14
2013/0091536 Al* 4/2013 Manjunathccocooveneeen 726/1

2013/0107311 Al* 5/2013 Engetal. 358/1.15

U.S. Patent Aug. 4, 2015 Sheet 1 of 85 US 9,098,226 B2

. S 5

15a
PRINTER |
E—

13a \\

e /11 gj
.| PRINTER < PRINTER | 1P
SERVER —

A 4

Y

E Y
[N W]

13n~ | // \’\\\\\/\: \f/\////i %j

PRINTER |/~ 17!
——

FIG. 1
/19
PRINTER DIALOGUE BOX
91 <23 .
Printer Name:] My _Printer !M/ ”BacldWhite or Colour: EI Colour l
Printer Status: | Busy ‘/v2la Page Range: I ALL I 325
Printer Type:] Inkjet }f\,ﬂb Paper Type I Ad H@
Location: ' Third Floor]’\/210 Paper Qrientation: I Landscape IHVE
9
27

FIG. 2

U.S. Patent Aug. 4, 2015 Sheet 2 of 85 US 9,098,226 B2

& >
WEB BROWSER 14/ o
@ V|l http://Addr.net || Tools {|Historylj] Help @ (PrinterID_1)

35 31
Web Page
H l"‘ ML Code
h
= (IP-ADDR 1) <—+{_Print_Script_App_l §<—— Intelligent Module | 37
(PrinterlD 1) ~777777 777707 (IP ADDR 1) b

APL2 | T~ ;

> (IP ADDR 1)fe->] Print_Script_App_2 | | |LErmL 5Pt APP 3

(PrinterlD 1)} "7 T T
API 3
~-»{(IP ADDR 1)
(PrinterfD 2)

POS

FIG. 3

FIG. 4 5
- SERVER ;55

Intelligent Module
(IP ADDR 1)

A 4

51\

/WEB BI;OWSER\

— Non-Volatite Memory |
POS LOGO_1 |
Web Page = !
LOGO 2 |
f |
A | LOGO 3 !
_______________ 3

(PrinterlD_2)

- =

U.S. Patent Aug. 4, 2015 Sheet 3 of 85

US 9,098,226 B2

61

Command Buffer

Text Command

Text Setting Command

Paper Feed Command

Image Command

Logo Command

Barcode Command

Symbol Command

Symbol Command

First Draw Line Command (Start/End points)

Second Draw Line Command (Start point)

Third Draw Line Command (End point)

Page Mode command (Add Print Area)

Second Page Mode command (End Page Mode)

Third Page Mode (Add Settings Info, i.e. print direction & start position)

Fourth Page Command (Add line or specified shape to print arca)

Paper Cut Command (without, or after, feeding the paper)

drawer kick command (set signal time and/or specify drawer connector)

buzzer command (specify pattern or number of repeat buzzes)

Fig. §

US 9,098,226 B2

Sheet 4 of 85

Aug. 4, 2015

U.S. Patent

' DOIAIBS JULI4-50de '

Biuld uebyeul Wi

/mb

9 ‘S1yq

T4

i _IdV jud-sode |

A mmEmmE .-
FHIRDALY .
550 -
WH »
N ebod gem

JEEMOIL CIBMA

Bl sl L »
JBULY .

FEGETR

IBABG GBM

U.S. Patent Aug. 4, 2015 Sheet 5 of 85 US 9,098,226 B2

Sample Skop i o Loges
vy PRy
BYHE 67 auweexevennis ravent: Curdie
THENE W0 SR SHUPRIRA BTH ! Ay k
ST Drangy dnies £} i,48
HIEBEE (homlats ¥ b3 3
SO GleGnacial % wae 81
/
Tubtotad 33
To Stay Toial 358
Sash M4,
Sompn s 0%
}m&ed sxevcd Baoar il
e L Printing o roator bnage
Your Number: T -Prinding et in the double-szed width styls
4 § 3 ' Socks: ¥ & Grenizontaly and x4 fearfiooh)
CAlgranent, Curdor
Plowse walt with Shabak
by 1n u&% 83
Mo Bop O3 B I -/
L etng otacode
«BFERIBT e

Fig. 7

U.S. Patent Aug. 4, 2015 Sheet 6 of 85 US 9,098,226 B2

Fig. 8

- Monochioms of Groyscola

U.S. Patent Aug. 4, 2015 Sheet 7 of 85 US 9,098,226 B2

<Web Servers

<Printers thatcan be
mconmﬂed:»

«Web Browsers

Wralass
BBnan
Device Controt
Fig. 9
Fig. 10

<Prirters That Can
Be Cardrolleds

web
Application
308

Whelaea LAN 7
Rioastes

<Jarmincds

ety Bronnal
Wholew
BEEBE
Uiseii Contiod
<TW Irdellicrnt Prnfers | Habwor

U.S. Patent Aug. 4, 2015 Sheet 8 of 85 US 9,098,226 B2

| Wirebom LAN /
L Boube

<lerrnincds

Weks Broeney
o Wals
Arploation
Wirsdons
Dvics Condeod
Mabacak
i < Intellioent Printen
3 Termdnal
Exacutes the Wab applcation using a broveser.
W TM Intellgert Prinder .
: Fig. 11

Beceives and poings pring data sent from the Web nowser,

Fig. 12

US 9,098,226 B2

Sheet 9 of 85

Aug. 4, 2015

U.S. Patent

¢1 "S1q

(ON : inoed)

(8iD] pUD 271 38 WD 9008 ARIE U sUOCNOD SjUld »

{0O0oL © Hnojed)

{ SPUODSSHIILE ¥NOSUIY fulld e
GapudTIoDo) | Indea)
ppund o] Byl IO 1 BAeQ

(@91 T6L89LT6L L n0IBQ)
Biupd juebiiaiul o4 JO SeIPRD df

BUpmolo; Ul

195 Of asn § UsBins 8L} usBlids sBules, sul sApidaig

uoydinseq

0004

(SpunSESHI) FHOMAY Torig

ST

2917765 291" T6L

spnad e BnTeIE BOY J6 SRR A

sBugieg ¢

US 9,098,226 B2

Sheet 10 of 85

Aug. 4, 2015

U.S. Patent

(IdY SDAUDD JUld-SOde)
uodnoD

¥1 "S1q

00O

R SN S
RS -
SRR
o 3
Py
P 3
[RRATRERES
[RRATRERES
Py
[
3t

00:81:91 LI0F 10 B UoR

POI{ED S Jogim
WRR WA (1N 3 g

1000

CASBCUUINN ANOA

| ouRiRyg CyRanaiRg

(Idv {Ulid-SOde)
JBGQUUNN INCA

U.S. Patent Aug. 4, 2015 Sheet 11 of 85 US 9,098,226 B2

Gusue licket nurnber lssuance (ePOS-Print AP}

Open the sample program Web page

v o

Settings
3 IP address of the TM intelligent printer
3 Device ID of the printer to be controlled

{3 Print timeout time
: -

Click "issue quel:xe ticket number®

4.

' 97~

Creates print dota (ePOS-Print Bullder Oblech)

' 99~

Prints (ePOS-Print Object)

Q Action on the sample program

,n:’.n"u".ug Action on the customer

besosnsssnssssl

Fig. 15

U.S. Patent Aug. 4, 2015 Sheet 12 of 85 US 9,098,226 B2

Coupon issuance (ePOS-Print Canvas APl
101 ~

Open the scmple program Web page

' 103~

Setlings
U IP address of the TM intelligent printer
{3 Device ID of the printer to be used for printing

L Print timeout time
' 105~

Click “lssug coupon”’

' 107~

Rendler in HIMLS Canvas

\ 4

Prints (ePOS-Print Canvas APl Qbject)

_Acﬁononmemlepmgrwn

"l'li’l’l"'l?l"
4

fvsssnssmimminnind

Action on the customer

Fig. 16

US 9,098,226 B2

Sheet 13 of 85

Aug. 4,2015

U.S. Patent

HTRL @ Tl
LT *S1q epag puelge g

AR BUL S0} £RE0 S JOHT VSN,

Bostasioat
EBNON MY SSSBIAA

'T1717

RESE ¥/ WA
HBS]

AR

BWow oW oW oW (0176189 761
G s onyg 2rdueT o Bnduo
10N AR,

U.S. Patent Aug. 4, 2015 Sheet 14 of 85 US 9,098,226 B2

Router Settings

Configure the seflings such as S3ID, IP addrass, DHCP and dllocated IP address. For
detdclls, iefer to the manual for the device you e using.,

11 1/
113~
Compurer Settings
Network Settings
Configure the netwotk settings for the compiuter such o IP address.
113a j 113b -
Web Server Configuration

Corfigure a Web server on the computer,

v 115\

Registration of Sampie Program (ePOS-Print_API_UM _E_Somple.zip)

' 117~

Terminal settings

Configute the wirslas LAN (WHFD settings of the tarmindd Yo match the router sehiings so as to
arcbie network connection, For datalls, refer 1o the monudd for the devics you are wing.

' 119~

Network Settings for the TM intelligent Printer
Configuration Is dons fram q Web browser.

121~

Network seftings for the printer to be controlled

Configum thata sallings by using the network seiting utility. For delalk, refer to the delalied iInstruc-
tion maonua for the printer (these settings aw not equired in this sample program),

29

120‘\\

Device 1D Seftings
Configuration is done from a Web browsec(these seltings aie not required In this sampie program).

]25\

Sample Program Settings
Configuration is dore from a Web browser(thess settings are not sequirad In this sarmple program).

Fig. 18

US 9,098,226 B2

Sheet 15 of 85

Aug. 4, 2015

U.S. Patent

61 "SI

SIPPY MRS SNG

Y SERY Santes saey ey

oo G2 e 0

SAPRY gf

LV IaY) Sopsasppy I Swang spmmomy Susn oy

SRPPY 4L PD

6e1

18T

LET

US 9,098,226 B2

Sheet 16 of 85

Aug. 4, 2015

U.S. Patent

0% "S1q

gel
1 T T8
6eT
AAAAAAAAAAAAAAAAAAAAA e
wry
Lel

US 9,098,226 B2

Sheet 17 of 85

Aug. 4, 2015

U.S. Patent

12 814

FRPUODESII
Ul POOHURD 8q O sjuud oyl PIDMO) AIISI JO IDAIBIY Y selDeds {sud) paseig Ay
POROLUOD ¢ O} IBjund 8Ly JO SSIPPD df Buj seyivady SSRIPPY d
PEJOYUOD e 0f Jajuikd 8y JO [epoll By seyioady 2o
"Jlld-50de AQ PEJJOUOD 8q Of sapuud sy Ajyuep) o () 8y seyioedy (i 801AB(]

uondussen

L uep

U.S. Patent Aug. 4, 2015 Sheet 18 of 85 US 9,098,226 B2

Embedding of e_POS-Print AP

* - 141 143\

Print Document Creation

 To create a text print document:
& To create a graphic print document:
O To create a page mode print document

* 15~

Transmission of Print Document

* 147\

Reception of Print Resutt

Fig. 22

US 9,098,226 B2

Sheet 19 of 85

Aug. 4, 2015

U.S. Patent

€% "SI

<TWIY S >
<RDOTf/ >

»

<APOas

<pesiy/s s
<3dTa08/»
{

Py aepTIngSads uosds mau = JEpTIng IBA
} {yoDeegarpTIng woriduUng
< g3t aosvael /axed,=edAy adrasas
I CATION /> <, BL K R 7~ JuTId-g0ds 20X8 dTI0sBsel/ JReY m0dly TTIoe |

-

<BT113/>FILIL<e13 13>

s

e </ WB-TIN,SIV8IVYD BISW>
paqguug <pOSIpe
<THO

<TWAY BIALIOQT >

US 9,098,226 B2

Sheet 20 of 85

Aug. 4, 2015

U.S. Patent

¥% "SI

STWAL S =

R itelein g

SIGAINEL/ »ung <, {) aDR s eWp T TN, s O TTOWS Uoaan
R

Spesy e

aadTanss e

figwanbax)yawte

$1IPUTERSOR IPPITHG = 35eudal IRs

suswnocp 3uTxd syl sainhoyss

F{OEBA T NG ARPTING) INOPPR S Xeprrny

14, uN I RTIONTY TOTTOR, } YRGLDPE C IapT T

P{g ‘E£)OTIRINSLPRE - XOPT TN

SISO Al o sinern T £ {W T RROS T RSP T T N0 TERLDTR AR P

¥ {BNX P IOOURIRSLPRE C 1epTIng

{ s us, J OUwIIRalppe 18P I

susamocn 3uTId v oeweIns s

f{IaPTINGRNgR T uoeds M5U » ABPTING Jea

goaldo I9PTINg IWIIL~S0dS W SNuNns
Vo{reDeaseppTIng BoTIoWNY

< adtanevar /s auess oedin adracse

<xdrang e ul ooy gesutade-sods, =oxge cadraoswar {axes, »adfs agdrangs

CHTHT IS P HILL LS TI T

w7 L ReIAT, oURRIVD BS

SPIEELs

o THER >

STHAY BEALOGTE >

US 9,098,226 B2

Sheet 21 of 85

Aug. 4, 2015

U.S. Patent

TR |

CYRTIOS I

FOIBUT B0 b TINg = asenbeal Iva

FUHUMOOR JUTIA Sy SITndoys S

H{QEBA IO0 " IBPTTM) INOPPE ISPT T

OB RTIONDIN TOTTON () ARBIDPY IOPTINY

<R3P 3uTId sy AFTowdgsif

Hpeutzepun ‘enyy ‘BTl ‘eureliariamunelppe IepTing
iy TRIORIEARBILPE ISPTINYG

OV SR04 TORT TR JUGIIRSIDPR * ISP LTI

{ {onI3 INICOWFARSLPPE - ORIy

2{ vue, BawraRelppe I8pTING

<BRUT339E Ieaoeseys 3urtad sy sandrIuels s S
Jusemoc JUTIE v 8398l S S
{yaeprIngsode-uosde xou = ISPTIWI Iea
Boalde IPPTIRG JUTI-304% OR SR80S/

s~

1 {iobwesspp TIVE WoOTIoung

< adtassennl faxss . »adly gdraoss

endrang e w1l 2 X panTAd- 23035 =008 Lplrroswanel et =343 adtang

o
o

US 9,098,226 B2

Sheet 22 of 85

Aug. 4, 2015

U.S. Patent

9% "S1q

XTI fix
{
{yBuTIason I TTNd = agsnbel Jwva
Juseruop JuTAd sy earnboays s
${OBEAT 100" TOPT T} INOPPE - TPT TG

FLTTHOION ISP TING Taulitey suauny ‘HADIATEEANES fo Yo YaxsauodialenIppeIspring

! {IRINED ROITY " IePTTNG) Ul TTEIRGIpPY " ISPT TN
FEBWOOE JUTIE © eReIns
tot ooT ‘o To 1, oflol . ipIAgauems TR IS JussmooD } aBYRIARID 3XeRUOD
20T, paxesuooyeds granes = INOIROS IBA
£ geaues, yprigaustms paasl JUAENOSOD = SHAUED JBA
SRAURD SUHLH Ul aBumy we aspusgs s
P {1reprIngacds - gosde Meu = ISDPTING I%4A
ol ISPTINE IUITAI~20d8 UR SUReXDF/
b i aDussspTIneg HOTISUNRY
< apdranavsel fgueg,=2d8y 3dtaoes
3T IE w8 W R PRI xd-s0de =037 G 39TI0gvanl/3¥es =248 ydranes

US 9,098,226 B2

Sheet 23 of 85

Aug. 4, 2015

U.S. Patent

L% "S1q

apdirogise

LB AT ad-e0ds w0y adraoeesel

«,Mwﬂ DR
{
18T IR0 XGDTTING = agenlelx Iva
Juswnoop 3utad syl sainboys s
L{OEEA L0 T IBPTTHL) IN0PPY IepTTng
£{ypugshedppy JeprIng
sapas spow afed SyLr /s
S{ L RVIDIIONI QTR JIRSIpDe T Iep TN

fipaupepun ‘oniy Teglwy ‘estvileriasavalppuraspring

{{p ‘PIeTIeaNaIpPE ASPTIng
VAN 300 T T) SN0 aRalphe I8P TINg
1{ 00, Buwiikelppe IepTING
pyep yared syy Agrosdgsif
{{ry ‘oruorstsogebegppe 1opTing
<unrytesd qurad spow sbed syy Aztosdas/s/
H{HOT o0T Yo% TosTiverysludppy cIepirng
<gaxy auwtaxd spowm shed sy Agrtosdgess
{ {ynyBegsleappy IeprINg
<@yxeys spow sfed ﬁﬁ%x,
FUSEEOR »ﬁﬂaw T BESLD
{1 ISP TINgSOAs oads Asy = u@wﬂwwn u@w
o L IBPTING JUTII-SOI5 W8 S3UBIDS 7
}o{isBewnsip T I WOTINNY
ﬁ:u&wa>*¢¢@;\w B =0d&y advass
famel eedfn adia

5

-

US 9,098,226 B2

Sheet 24 of 85

Aug. 4, 2015

U.S. Patent

8% "S14

i g v ek P
ARG f
SUEFFR S pUNG 4, {) BRI SER T TN =0 TTOUWD WORI0
EES AT 5
CPRRL S
RQats iy g Sl 0

%

f {ananbex) puss - gode
yusuwaoop yurad sy puwsgss
f {RBIPHLL UTIIRCAS " Uosds Reu = gode Iva
302 0T IUTII~S0IH UE SIVRISS /S
1 OO0 1A noeRTARIONN T TTenO D TARD L YD T B T AT YR
FEode jurg~IBo/ a1 CEY T 85T LT/ /1Ay, & SEBAPpY Tea
apeappe JuToed pue ey 3egs s

¥

TELEUTXNROY IBPTING « aesuhax awa
usunoop Jaid J0 UoESIURILY | IOERL L TSP TING) 3NGPEE ISP
DU SR AUMEY T TR 3 ARIPEY AR TR

Tig T EIARTOANSEIPEE ARPTY

b4 w%ﬁ»ﬁ%m@u\m T AHPY ﬁﬁ.&w JUGG IR Lpe QM%mu.ww f1ie

H HEZ 1% 9 B YRomgy¥elppe I8P TIRg

i M 2 w mﬁm%mﬁu,n@%%uﬁ@ CERLT IR
Diyaspringacas uowdk 25U » IEPTIW] a9
pwmnacy artd v SNeRIDs /S

{

} {jeBunasprrng woriIsunyg
“oprasmesnl fausy . =adiy adraogy

< ISTA08 Fo (FL W e pesutad-sods, =028 Jydrasswanlianey, =048y 3dtx

s,

Pl

CETITR/AADRILCRT IV

W f B TRV, e RREATD RIS
SR

< PER

ST FILI AT i »

US 9,098,226 B2

Sheet 25 of 85

Aug. 4, 2015

U.S. Patent

6% "S1q

Trspucd s 95900 POCEs Ja SU 10 LU0IS eu) S0 dsuud e Ad pegasrchiags
Aprsgts DD S Deeouns 8 qof jud ey sesdns pogad Inosiug] suyp UsUm

1658 §1 D00 SRUNDSS (1 DRERUD 8§ usus oo s ispsumind s sy

SLIODESHI U S0 Sl HOaD Of sl ey seipeddy

pousd nneu

BYLOTIBM
e ssepupd jueligop wi ou Dusn paasgsBer ¢ oo sy Agoedy

rapupcd doy pasn 90 of et sy seyoach; Rty
e juefine g Wi S O SUIDY LBEMACT S 10 SRHIDD 4 B4} Epe Agoedy LHALIONT
ustiduoseq Ajmeds o swey

U.S. Patent Aug. 4, 2015 Sheet 26 of 85 US 9,098,226 B2

< EDESCTYRE hitmls
sytmle
whends
ameta charset="gif-8* s
wiinlesPIPLE vivies
caoript fopes® hext 4
Cwpdpd Uypest hant
function bulldMssesged)
Silreaate a print doswment
vay uilder = new epoon. sRGERaildex i} ;
buildesr . addPexthang{ten};
i dey . addDaxtimmothi tyvsed §
builder. addPextPFont uilder FONE A1,
bl lder . addTent Bizsid, 3%,
fagd Yoy addTent {Bel e, telordd e j g
Taud 3oy adkdt thod Tader (CUT_FREDY ;
var ragesst = balldsr. boRteingi)

.

war adidress = ‘hitp: F2LLaR182 L 1eR fogi~hinSepon s
wayvics. egitdevidslocal printeritimecul=10000"

SiCreate an ePOE-Pyrint obijset
VAL SPOS = BEW OREON .. SPORRLrInT (addressl;
£ Gmt s revponss veossipt oallbsck fanotion
apas . onretelve = function {resd {

Sivhien the painting is not suwoosssful, dsplay 3 nessage

3 (lres.guceesst §

alazt{ ‘& print syror oceurredti;

=

¥

vl the print doomesnt :
L mand Lregasat) Brint result rensdot
sallsack funclion

o3

viptioe
= fhends
ot dyre
shutton cnolick="buildMeseage i) *2Run</bat toays
< fonedye

< kb

Fig. 30

U.S. Patent Aug. 4, 2015 Sheet 27 of 85 US 9,098,226 B2

FICTeste A% eFCO-PRint obhiscy
VEY #PUS W ORW eRSon.wPUEFrint faddressi;
FF Fet a yaspinge reveipt Zalllwmck funstion
wpng . onreneive = fusotion (resa) 4
FPO0%Rtain the mrind mrwmeulr and epmry oode
*a'f mEg w CErINGY o {Tes.succowsx T HucossE’ s 'Esiiuge’l 4 Tinlede: ¥ o vag.oods
v hoftatus B
£4 o%tain e pyintsy status
var aEb = pes. ou’anue;
AF imsk & epos. ASE MU _REAFOMIE {
wmag A3 ¢ Mo printer vesponsein;

Ptn e
2

{ask & =pus. AR PRINT 513 BATE
TR A% PRANT COMPLEtEAD

2

famly & epog . A58 TRAVEER MUK { 4
mRy +x C gratuy of the Srewer kick vupber ¥ comnpector pin s YRR

e

tanly & epds AR UFP LINED {
wmay 2 7 GEfllne statuein’;

(23

{ask & epme AR UOVES _OFENY
wag em 0 COVEX LB ODERNR :

2

{asly & opos . ATR_PAPER_ K
- T

I
R © paper Yeed o o e Faeding paperinc

fandy & epos . AFR_WSIT_ON_LINEY { .
may % 7 Waiting for online recovaryint;

Ead

fasky & 2pus.3YB PANEL SWITCH: {
wmag ~x ¢ Panel gwitch iz et

e

fasly & 2pos.ASE MECHANIURAL ERRI {
mag ~x 0 Machanicel srror gemeratedisn’

2]

iREl & eRO¥.RET _AUTOLUTIER _BBRY {
WRG A T AYLO Sutieyr wryor gunerireding

2]

B0 & SRO¥ . ASY_JINBROOVER_ERBY {
wEY A% Unrestvsrable srrio generstadin;

4

IRl & SROS ASE_AUTUREIVER BRRI {
WEG 4x AULS DeIoVery Srrey generatsdin’;

Phoied phiet phiet fhied phehed phnred pbhed phiied plared phdee peie
2

bs3

igals & 6pOF ALY RECEIFT NEAR MDY {
wag +x 0 He paper in che roil paper pesr end detestorian:

feNg .
[

{asly & epo¥ ASE_RECEIPT ENDI {
weg <w NG pEper i vhe roll paper =nd dwtentarist:

H
if jasb & epos ASR BUITERI {
ey ww ¢ Sounding the buzwmy {iimived modsliiunt:
¥
1€ {ash & Bpos.ATR_ISPONLER IS STOPFED: {

mag +x ¢ Srop the spocierin’:
3
Fi08apisy A the &isloyg hox
aisekinegy;

Fig. 31

U.S. Patent Aug. 4, 2015 Sheet 28 of 85 US 9,098,226 B2

fiden the

=23 point addesss
war adfrane =

‘hoop: FAIFE IS8R 1B, L8R /el wbinsepoe s rervice ogd tdavid=loval printer
Htimennt=13408" ;

FiCreate an efOS-Frint Bulldew oiviest

war balider = sow epaon.ePosieilidar{addressl;

fiBet an event oxlilbach funotisn (cower open’
¥POg. encoverspen = functisn I {

Blsre i omreropent) ;
by

Fioet an wvent wallback funcrion (paper near and;
Mpo®. supapernsarend =« Sumevia {3 {
HIar el papernasrend i s

FiEnakise STALUS @YENL opEration
2poR. openil;

Fig. 32

151~

Embedding of ePOS-Print Carwvas APl

W o

Rendaring in HTMLS Canvas

o

Prints an Canvas image

Receplion of Print Result

Fig. 33

U.S. Patent Aug. 4, 2015 Sheet 29 of 85

US 9,098,226 B2

Ernbat
e olarastatynf-ET s g
<tinierTITLla/cicies

ivanrdpt typsertestiisvasevipt” srostspos-printag.n, nh}s°»efs ripts

AEIUAPL RPNt TRvRET IRt Y
funerion drawlanvagii {

.

“IEYipy

« e

shedy

Fig. 34

ER 30 Xt
aifmiy
-1
spets chaynebxtuti~
CEARIEMIITLES Sk
2 g wigy “’9"‘”‘ TR

fataaloe

-3

SHHFET ALY ArcsTepon-print-do . w380 e

<o gt TypEstLeny ,wmaf*>*zgf A
Sumanio Arawianvas

sendering in 8}‘1%‘3 LRSRE

Fielntedn the oaniwgy

WRY canvar w ducument . JerRixuentRY LA ‘urlnves iy

VEY CUBLRNE £ SRR . getionteant {28 ks

Fiofemndar an Lmages

context olenriner{, §, B1Z, 4883,

Lot ARy Ry avlmange { docnnand get o iy T8 tonffney, &, &
+ B33, 334

centaxt . £13E8teds » ‘xgba{iBy, IBE,

eorkent . £ Race {8, 4, 533, 486},

conbext RLITENYIs o tpbail, B, 8, 1.B1

FiaRendsy 5 owstar fark Tor ohe msger

cordient grewivags { dnrune st peb R Ircant By A< tumaxk ¥, &,

content . Arxringsre Sooument gl losanr By Idl vemrek }, 386,

i eBandar texts

2OREART CoRtAL ign 2 ‘renter” s

LOBEHNT . oMt nsniine o ‘siphabetisty

Lok ant - ot hakd warwal worssd dEpa “Times Buar Boman®, werifoy

womtant . $411%ext{ PR coffew>, 25&, 3243

~

iRE, £.85¥%;

Bkg
3343y

w

L} e Runesbataoney
L 2 i Wwdghte &%6' BRI Ee- S e R R
Finy mﬁiwe‘ grostingfonies dpyr aits
«x*:,;s “éx"mﬁxk“ Fyse vimy Swmrele . oy altet iy
, 23

Fig. 35

US 9,098,226 B2

Sheet 30 of 85

Aug. 4, 2015

U.S. Patent

A e S
anuﬁ\a ﬁm T Wm,m w

ok

w @ :,).

f:mw,?;wxm?ﬁ im .;ﬁpﬁ? ,,ﬁ 45 ?@.wr.*a%w .sﬁ,mmf.
CIBTEEOGS PUTE . |) SRAURINEID UL TTOUD WOIANY

...L_,M%s.

o ﬁ.mii

Tk

Fxd
%

8
53
i
kii
‘v\

£
F

feanys Yeeawwniaurad sode
HWTEAS S
¥ {manrpPe) uiRsmmarres wonds sen w zode awua
womlon TAY PEANED WUIIE-S04% UR BIERID
£ BOOO TSNP T ARl TR no s Taens TR R pa R
wg@a%ﬁémﬁwﬁ.v,,_«.mwx..mﬁ TET//edany, = SEOIPRR ama
gearpey sured pus syl 3w

g,

SUATEDOR: PR I USRI,

Py oy, rawwannal BRaaen o WEHENI0D 294
sprigyomee e JUMENONY ¢ PRAUED IWA
RN &? TERE S S

FRALED IR Wy Buraspusy g

3§ VRAURDARID WU ?,ms@

¥

. u&g(mﬁ?@m wwﬁuxsmﬂw

f i evamenia,]

it aes fre 2 LR w e pe s oo, aae

: %m&@a
TR
STENY RIAIDVII

U.S. Patent Aug. 4, 2015 Sheet 31 of 85 US 9,098,226 B2

e e
% & DL
= & T 5
&5 o e W
£ 8 oo
e @ B
§ R .
a2 b
) R &
S 2 = R B
St S0 b
3 o Ry S
R w
- 12 et @
% 3 2 N
& N % N
d g 3 =
&
8| S g S (A
i W
4 RETERE 2 % .
é? L ® 3t Y S bn
i rEk 2 % =
LEE § % =
G 3 %8 4 2 ¥
By N 2 (SO
o - Al et
o Bt & 0§
R, S 2 N
¥ & P
. gﬁ R4 Mo @D S 3
«§ W 8] et R R I
R OB W] g
R SoEHR oW S
B BB OBe R i RN
.. R Y § & R * LS
&3 moy oW TP # BN RN
R < R N] tgwwsﬁ
@ adat - EE .g&!gwmﬁ 4 ¥R
o1 NS SRy #Homw 33 {g s eed
X g eile ROR P @# & F R
B S IR I s B bWt F oI > RS
g IR YR N oB & IR
o SR EEEAEE o LB Y
RERURRY P &« = £ & om
NI SERRR e 8 g &
® @R ED e & AT
S 8 3 g&«\ﬂ 2 o8k 1 L et &
& It B] £ % A% - Fae
wom N as:x*}ig{\iﬂﬁ & etow W
R A8 waBETT 83 fon g
3 el ~ 53 3 e =2 R
Q%cg&éi% b u w§‘§w oR 55-«*.3‘
PR % 2 e, 8 .3 i
RO o B e vt e S,. < & § o
PR R B M L] [t el
: 4 [SIE TR R TR S &
Y b N gx P v
X RN N - N TN HWE
N 2o N D oad
CRN v S
e

US 9,098,226 B2

Sheet 32 of 85

Aug. 4, 2015

N [
M
\..\\ S
P b
.m\\w
v m u
wu 2 2
Lo -
&7 1 i
e 141 141 f
T w A
+ 4% & “m \\.\u
43 i 3 e -
~ g |) 4
-G “H.‘ w.; <5 w.»
¥ . " 4
g o e 53 i
% N é S
% . ; & P2 o 5 -
o . G "o e S @
“ (1 ; N 4 24 s # i
2 Wy “ % & @ 3 %
rr - 5
sm u“ mM i & 2) 5 "
% ¥ &) 3 4 $ YRS
% o b4 > 33] g e d W w.
4 a S T TR ws b G5 b
- i A kLS uns o, i
N “ i Pk e & o L ah W "
R A st by % S g @g g8 - & fhon o
%] % H s ews e ot i B 53 4 4 el b
“ (s % B Yy o e B [4 Wz Min M] e 3 o~ 53
e K5 €x . 2 4 We W e e e R - A H 154 4 5% % @
ok) [A T Y S B Aty el fx d 4 G $36 B1 b BE =
A BT B Goomd o Mg e s s w G Wi & it By e
#%ois 5 B By 4 W % Skt Biw g B b s £ & 14 } Y
e B W s by EH D W% BG “ 5 i@ D@ i3 e P Froad
g4 5§ -h 0w gl om0 Gk B0 e RO BB BEEC BO
Sdlbk : s
Su el gy B oL 0 ES Bg ok Y Bo BB UE 28 A ns
2E.T g Ao oo mm G i Gow % 2 oan B 2 B8 TR
y s & Z o i i G4 e Hws & Bt mA Bh Bh Boow
7 £k . m ok 1 t 143 t i i 3] (K43 i iu 11 i ¢,
v Wy W WO B fEel W W Gt Mm@ o m wd m A
Bahmbt v G own B% 2u 2% R vk BE BD 2% D Be &=
- I v§ 74 4 5 7 #
Npgna noeg b e adr ZY 4 4 o GG G G 4 [
5oy B G e e D fhe G 6 Dav v fav e v e g
Bowkuy s v a3 ko % % % # % & 2N O &
£3 4 a1 0260 # E #] o] 14 a3 3 B] B 3]
»‘.“ w\« MN M“ w.‘w MA ﬁw M\N ¥ B A P @3 % - % B * S 4 % F % 4 % & 2% 4 o 4 B ¥ o ¥
< B Vs Y 3 4. b
VSRR B S A N VRN OF TR 7 i e 21 4 0t 4 7 o i
G W WW LU mE SE SE AE BE R4 mE #2H 2 I 2B SE s
- I Vb R N N
B B i %4 Wi Wi %q Wi E] 2 4 w4 w5 Bk %4
% Mw\v“ wm 3 m v e R I B B B e] e] sy 208 e urd P] oy wir g
‘L% dw Basn
zrwm\& i
£ G A H oW
! A
£
“en, Sk
-~ Bt

PR SRS

o

U.S. Patent

Fig. 38

U.S. Patent

Aug. 4, 2015

Sheet 33 of 85

it BEesy
Wit //LB2.

*%3!

Bo0

o

¥
o

oune

¥
o

2

wEr #pos » reve wpson. arrrasPrinciaddressl

&

7 i Bwt By aRTy
BB RV, =

BLBLLL mRY

S

Ll

ipapay TRy Ll

e
O
P
&
&
oo
B
Y
2
@ B
I
Y ﬁ‘
£ i
i«
¢k
]
R
P
i

s

oy

i /Enable BLatus even

N

US 9,098,226 B2

Fig. 39

U.S. Patent

Aug. 4, 2015

Sheet 34 of 85

US 9,098,226 B2

aorahuctors

l b O SPCEFant XML Bulidar odgect

bt

axkllextilion Acicl oriog oy the Teef alignenant seting.
sxiofext- .
) ¥ N *g 3 3 _v--_‘-«v « 8 o --~
UreSpoce Sk Qo B The Bres s spios setling
gekofiediodatn Skl cr e for the oot sodotion seling.
S SN Skl o Tory o ety teorh
sxckfeetang Ak nriog B the Rrgst anguogs ssiiing
Teact sxkofisetiont Akiv o togy for the tead Font sefting
ackifacBmooth Slol crog B the bt snoothing selfing,
ceadDouble Ackh ot i Penifdng the doublsslad
Fevet sadhing
Sekfavitge Sgivhy Qg Ty The Tost aoole satiing.
axciffeithde Sk o Fog for Hhe tasd shde salling.
ackiasiBaaion ;i& S FORD FO0 SENSRIRIg TS DT posiiont of
cikibpaciiinat Ackds cring by papar Bealing O dotsh,
: . ..“> & - ? \ CHN \ : . \\§I
Paper Faed qckiFeadiing &::@p Q .::1@ §>¢ ;NN Roacling dreling! .
el Aok o e faed fo the command bufles
i i 20 and ate
N SRR Akaln o Rogy B O soshes INOgs 10 B peintesd
{A goyaden
Ik kg Ackh ortagy NV oo b e painbsch
skliioroake Sckde o fog e g harcodts o e gt
Boroods Aok o bog by o heeedimendona ooda o

sxioBerndad

L prindad

Fig. 40

U.S. Patent

Aug. 4, 2015

Sheet 35 of 85

femer Oscron

Meathod
addHling Ackd a kg for atharbontcl lins 1 be prinfed,
Rubed ine cichilinelagin Aok artag for starting o varlical e,
ordoiVLinesEnd Adcl atog tor finlshing a vartiont ne,
Pogebagt Acich o tag for swiiching o pogss mode
addPagebnd Ackh atag for fnishing page mods,
A Sckd atay for spaciidng the pint aresy in
QckiPoagedaen page mjgﬁ
Qckifogelinec. Aol atag by spacying the pint direction
Poagemods ton in page mode.
Agdck o ag for acifving the print positin ing
axddPegaPodiion P Fsde
aokiPogeling Adkk 9 Togy for drawing G Ins in poge modks,
ackiPogelectan. | Adkk atog for diowing a rectanghs in Dogks
Y 4 addCut Ackh atag for paper cut.
Dy addPubss Ackds @ tag for the drwer kck-out.
Hok-out
Buzzor QckGoursd Aty o Ty for tuming an the bassat
:::dvﬁa ot Sk armanang Rastor nogys hollang procasing msthad
gif;::gw toString Raster imags brightness comection v
neifione Rasher image halffone proceassing method
¢ M 1.2 and keten)
brightness Rmt»ar tmage brighinas corechon value
in Vi 1.2 o kotend
RSSO hogsargs baulfer

Fig. 41

US 9,098,226 B2

US 9,098,226 B2

Sheet 36 of 85

Aug. 4, 2015

U.S. Patent

eg{ "S1q

W] PUnGs 15220y

. 3L

WiBUS] Ssndd INOAON IeMEup

« 350d

IO IOAAR I

. A a0

. L1

LAY i Bl Bl

o NOAUDIHG

. 3MN

PR LRI A

ti;.mw\ w\mxw

A Ay YA EAIAD I~ |

« YORMAS

LOUBOC M

. BiH

BLAL SO0 10

« IO

CIL0] PRI 271 PR M) BALE AT

. IOV

(B0 P 771 190 U SOy SUOLIOH

o NI TYH

AP s 1O

.« BOWOD

pI it

. WY

404

o INCH

JUEHBIOTS

U.S. Patent

Aug. 4, 2015

Sheet 37 of 85

US 9,098,226 B2

Cortructhor
E P OSFrint ! intticlizes on «POSFint oldact]
Mathod
sandd Saneh o massage
Enabdss stopus event opanation
Qe
{nver 1.2 andd iotaty
Disablas stodus sant opssation
claos g Vot 1.2 anct ot
Fropsarhy
Oslokass URL of the prinder Gn Ve 1.3 and Kiten)
Encibiing cibobling of stalus svent
enabled fn Vet 1.2 aanct laban)
- Frirder shahus updiate interval
Intarval ginVier, 1.2 and laten
status Status
Euwsnt
Sr¥eCedas Ragporse messnge teosipt evard
SNGITCE CoorTaunitalion erar svent
angtatuschangs Status change avent Jn Ve 1.2 anal katedd
anonfine Ondins svent an Ve 1.2 and lated
SROTeS Cfire Bvant Or Wat 1.2 o Kied
ool Non-mepores svant dn Ve 1.2 andd ke
T N Cosst o @want dn Ve 1.2 and taters
QERCCVRIOIRT Loonad opan avent dn Vet 1.2 and icda
faradining svent
onpapeck m 1.2 ot i‘st@t}
AT te Tat T Papsas resar s ssvant On Vier 1.2 anddinled
SO Faper and avent On Ve 1.2 and latan
onchowarciosedd Cirorasar close evant dn Ve 1.2 ond laten
QOIS OPaN Dicvasat opan wvent dn Vae, 1.3 ancd kten
Constont
Ase } Status

Fig. 42b

U.S. Patent

Aug. 4, 2015

Sheet 38 of 85

US 9,098,226 B2

avaseri
o

£y
AVRECTIPL S

var hulider = new spson.erottuilderil;

caeript typesTrext i
<goript typsstiaxsdd

€ femw

funetian bullddeasageil {
H

& e

®fsripts

£ STTST AN AN S NL XL fe T S paxdipr e

ConstanNaion)
ALYSN_LEFT coletondty

Fig. 43

Description
Agnevant 10 e lelt

SLESM_CENTER

Adgmrend fo e cander

AN _TIGHT

ABgnrmant 1 tharight

Fig. 44

Relum walue
| @POSPrnt Bulidiar Qbject

Ubject type

[QPO Bl]

Fig. 45

SETINY TPRes YRt iavasorintt ardsrepag-print-g o iy
AHRATIHE DAY LART STRVAROTIHL T
A T
Funeoio budidNessageid
var Bdider = new epaon. ePisEelideri:

Fig. 47

U.S. Patent Aug. 4, 2015 Sheet 39 of 85 US 9,098,226 B2

<SOTIDT LEPes ttanf S IATASCRIpYY srd=taposeprint-llgordetredgaripes
«geript typestiextiiavascoripets
L=
funerion bullddessagely |
var bullder = new epson.ePossuilderiy;
builder.addrextidneSpace i,

o

",

R

<{soripts

Fig. 48
Setting Dasciription
o ot 1 Spachioy rotatedd printing of faxt.
folse or O {diatoui Camosh rotated peinting of faxt,
Fig. 49

<ROTIipT fypestisxiiiaveascript’ srosteposepringted o jetrcdisoripts
£2eTIBT TypS=trantifavaserisgt s
% Fm
funevion bulldesesagely {

war Bildsy s new adeson. sReSBuilderid:

builder . addtathotateitroal
A
¥
{3‘

aiseripty

Seee

Fig. 50
String Description
\t Horizontcl tabxHY:
n hetfeed(h
i Caniage retum

Fig. 51

Fig. 52

U.S. Patent Aug. 4, 2015 Sheet 40 of 85 US 9,098,226 B2

¥ ONIEiOe

& TET

builder.addTextLang{ en‘fr

Fig. 54

Constant Gonh)

FONT_A {dsfaud For A

FONTR Fort B

FONT_C Fort O

ript Cypestextiix Pyefaoripts

ipt types="text i

rar builder = new sposon.sPORBoi

builder. addText Font {buiider . FONT Bi;

5
3

Fig. 56

U.S. Patent Aug. 4, 2015 Sheet 41 of 85 US 9,098,226 B2

Fig. 58

frueort Specifes the double-sized width.

faise or O {defoudt) Cancels the double-sized width

undefined

(When not specified) Retains the current setiing for double-sized widih.
Fig. 59

frug or Smecifes the doubds-sized height

fose or O {gefautt) Lancel he doubia-szed haight

Retoins the curent seflting for doubie-sized height

{When not specified)

Fig. 60

Fig. 61

U.S. Patent Aug. 4, 2015 Sheet 42 of 85 US 9,098,226 B2

Setting Description
integerfromito8 Horizontal scale (defoult 1 1)
undefined Retains the current sefting for the horizontal scole
{When not spacified N9 '

Fig. 62

Sefting Description
Infegerfrom 1108 Verticdl scdle (default: 1)
undefined

. Retains the curent sefting for the vertical scale.

{(When not specified) ng

Fig. 63

i

ot type=tfext/]

13}
iy
b

t
ks
vt

Fig. 64

U.S. Patent

Aug. 4, 2015

fusorl

Sheet 43 of 85

Description

Specifies the inversion of biack and white paris

US 9,098,226 B2

of characters.
Cancels the inversion of black and while partfs
false or O (defaul) of characters.
undefined Retains the cument sefting for inversion of black
{When nof specified) and white,
Fig. 65

frue orl Speciies underining.
folse or O (defaut) Cancels undertining.
undefined
Retains the current underining setling.
{When not specified) e ibecy derlining setling

Fig. 66

Description

frueorl Specifies emphasized prinding of characters.
fakse or O (defoul) Cancels emphasized printing of characiers.
undefined Retains the current sefting for emphasized print-
{When not specified) ing.

Fig. 67

COLOR NONE Sharacters are not printed.
COUOR T (defouih) Hrst color

COLOR 2 sacond Colny

COLOR 3 hirg color

COLOR 4 Fourth color

undeiined .)
(When not specified) Retaing the curent oolor selfing

Fig. 68

U.S. Patent Aug. 4, 2015 Sheet 44 of 85 US 9,098,226 B2

Fig. 69

Fig. 72

U.S. Patent

Aug. 4, 2015

Sheet 45 of 85

US 9,098,226 B2

*/scriphs

<3oript typestfaxtiia

int Lype="textiis

Imilder.addPsxl { "Worlid™) .addFesd{)

Fig. 73

COLOR_NONE Characters are not printed.
COLOR_1 {defoulh) First color
COLOR 2 Second color
COLOR 3 Third color
COLOR 4 Fourth color
undefined
(When not specified) First color
Fig. 74

MODE MONC

Mongchrome (hwo-fons)

MODE GRAYIG

Grqy sodle (16-one)

undeinad
{When not specified)

Monochrome (hwo-tone)

Fig. 75

U.S. Patent Aug. 4, 2015 Sheet 46 of 85 US 9,098,226 B2

FRT canvas: - Jocument .. getElsmsnt

if {csnvas.getUontext} {
war contesxt = canvag.gebtContext{'2d*};
builder.addIinage{context, ¢, &, canvas.width, canvas. height);

var canvasz = Jocument . getRlepentById{ ‘myCanvas'tly
way conbext = canvas.gstlontext {247}

war buildsr = new epson.sPGSBuilderil;

Puillder. miiPageBegini};

puilder, addPagedrsa{d, 8, 300, 304},

ilder. addPagePositionid, 299},
ullder.addImageicontext, &, &, 300, 3043
ailder. addPagend{y;

Fig. 76

<scriplt types*bext/iavascript* sro=*epos-print-2.x.X.Jis*></script>
<gcript type="textsiavascript®>
LA E
function buildMessage() |
var builder = new epson.ePOSBulilder{);
builder.addlogo {48, 48);
}
Fl==>
</scripts>

Fig. 77

U.S. Patent Aug. 4, 2015 Sheet 47 of 85 US 9,098,226 B2

Barcode fype Description

When an 11-digi number is speciiied, g check digitis
automaticgily added.

UPC-A When a 12-digit number s specified, the 12th digit is pro-
cessed as g check digit but the check digit is not val-
dated.

Specily 0 0s the frst dight.

Specify the manufoclurer code inthe digits 20 6.
Speciy fight-align the lemeoode inthe digis 7fo 11,
The number of fem code digits varies depending onthe
manufachuer code. Specily (s in emply digils.

When an 11-digit number is specified. a check digits
autormatically odded.

When a 12-digit number is specified, the 12th digitis pro-
cesad as g check digit buf the check digit is not val-
datad.

EANIS When on 12-dight number & specified, a check digitis
gutomatically odded,

When o 13-digit number is specified. the 12th digitis pro-
cessed as a check digit but the check digit s not val-
dated.

EANS When ¢ 7-digit number is speciied, g check dight s auto-
matically added.

When an 8-digit number & specified, the 8th digitis pro-
cessed as a chack dight buf the check digh is not vol-
dated.

When the first character is *, the character is processed as
CODESS the start character in other cases. g start character s
automatically added.

UPC-E

JANT3

JANS

Fig. 78

U.S. Patent Aug. 4, 2015 Sheet 48 of 85 US 9,098,226 B2

Barcode type Description

iE Start and stop codes are automatically added.
Check digits are not added or validatad.

Specify a starf character (Ao D ato d).

CODABAR Specify a stop character (A to D. ato d).

Check digits are not added or validated.

Start and stop characters are quiomatically added.

CODES3 A check dight is automatically calculoted and added.
Specify a start character (CODE A, CODE 8, CODE C).
A stop character is automatically added.
A check digit is automaticadlly caleulated and added.
Yo encode each of the following characters, specify two
characters starting with the character "0
FNCT: {1
FNC2; 2

CODE128 ENG3: 3
FNC4: {4
CODE A {A
CODEB: {B
CODEC: {c
SHIFT: s

{ f

A starf character, FNC1, o check digit, ond a stop
character are aulomatically added.

To outomatically caiculate and add a check digit for an
application identifier (AD and the subsequent daia,
specify the character ™ in the posifion of the check digit.
You con enciose an application identifier (Al in
parentheses. The parentheses are wsed s HRY print
characters and are not encoded as daia,

You can insert spaces between an application identifier
©51-128 (AD and data. The spaces are used as HE print
characters and are not encoded ¢s dala.

To encode each of the following characters, specily fwo
characters starting with the charocier (%

FNC1: f
FNC3: 3
¢ i

! D

!: {"
{ {{
Fig. 79

U.S. Patent Aug. 4, 2015 Sheet 49 of 85 US 9,098,226 B2

Barcode ype

GS1 DataBar Omnidi-
rectional Specify a 13-digit giobal frade erm number (GTIN) not
GST DataBor Truncated | inciuding on appilication identifier (A or a check digit.
ST DataBar Umited

You oan enckose an appliogtion identifier (A In
parenthesss. The parentheses are used as HRI prind
charactens and are not encoded as data.

BARCODE G681 To encode each of the following characters, specify hwo
DATABAR EXPANDED characters starting with the character "
NCE: {i
{: {
)2 th
Fig. 80

Constant ype} Barcode typa

BARCCDE_URC_A URC-A

BARCODE_UPC E UPC-E
BARCODE_EANTS EANMIZ
BARCODE_JANIZ JANTZ

BARCODE_EANR EANS

BARCODE_JANS JANE
BARCODE_CODEW CODE3Q

BARCODE_TF i*
SARCOLE_CODABAR CIODABAR
BARCODE_CODERS CODESI
BARCODE_CQODETZS CODETZR
BARCODE GS1_128 {351-128

BARCODE _GS1_DATABAR_OMNIDIRECTIONAL | 351 DataBar Omnidirectional
BARCODE_GSI_DAIABAR_TRUNCATED 81 DotaBar Truncated
BARCODE_GS1_DATABAR_UNITED &S1 DataBor Umited
BARCODE_GS1_DATABAR_EXPANDED G851 Databar Bxpanded

Fig. 81

U.S. Patent Aug. 4, 2015 Sheet 50 of 85 US 9,098,226 B2

Constant (hr} Descriplion

HRI_NONE (defoulh) HRIE not printed

HRI_ABOVE Above the bar cods

MR BELOW Balow the bar code

MRI_BOTH Both above and below the bar code
Fig. 82

<gcript type="text/javascript® sro="epos-print-2.x.X.3is"></script>
<seript type="text/javascript®>
<twe
function buildMessage(} {
var builder = new epson.eP0OSBuilder(});
builder.addBarcode (012345678507, builder.BAROCDE UPC_A,
builder.HRI_BELOW, undefined, 2, 64);
builder.addBarcode (01234500005, builder.BAROCDE UPC_E);:
bullder.addBarcode(201234567850, builder.BAROCDE_EAN13);
builder.addBarcode{*201234567890°, builder.BAROCDE JANI13);
builder.addBarcode(2012345, bullder.BAROCDE EANS);
builder.addBarcode(2012345, buildex.BAROCDE_JANE);
builder.addBarcode{'ARCDE', builder.BAROCDE CODE33);
builder.addBarcode{'012345%, builder .RBRAROCDE ITF);
buiider.addBarcode('AG12345A', buildexr.BAROCDE_CODABAR);
builder.addBarcode {(FABCIE’, builder.BAROCDE_CODE?3);
builder.addBarcode(® {Bakcde’, buildsr .BAROCDE_CODE128);
builder.addBarcode{’ {31)201234567890%*, builder.BAROCDE_GS1_128);
builder.sddBarcode('0201234567890",
builder.BAROCDE GS1_DATABAR OMNIDIRECTICNAL);
builder.addBarcode(’0201234567890",
builder.BAROCDE GS1_DATABAR TRUNCATED)
builder.addBarcode (0201234567850,
builder.BAROCDE GS1_DATABAR LIMITED);
builder.addBarcede(* {01)2012345678903",
builder .BAROCDE GE1_DATABAR EXDPANDED):
}
fi-—>
</script>

Fig. 83

U.S. Patent Aug. 4, 2015 Sheet 51 of 85 US 9,098,226 B2

2D-Code type Description
Standard PDF47 Corwer! the character string o the stiing in UTF-
&, apply the escape sequence, and then
ancode the shing,

Truncobsd PDFSYTT The doda orsa can contain up 1o 828 code
WOl I o maidrmum of 90 rows, sach of which
can oontain up o 30 codes wonds.

&R Code Model Corwert the character string 1o the slring in Shift-
JB, apply the escaps sequence, and then
ancode the sting based on the doto bvps s
showrn below,

Murnbear gto ¢
LR Code Model 2 Almhanumesic choraoter

to® Atod space 5% %+ - L4
Kanit character Shift-i18 value
8-bit byte data

Oni3 o OxHf

Fig. 84

U.S. Patent Aug. 4, 2015 Sheet 52 of 85 US 9,098,226 B2

2D-Code type Description
MaxiCode Mode 2 | Convert the character siing fo the sting in UTF-
MaxiCode Mode 3 8. apply the escape sequence. and then
MoxCode Mode 4 sncode the sting.
MoxCode Mode 5 in Modes 2 and 3, when the first plece of data ks

D>\ x1e01ixidyy (where yy I o fwo-digit num-
Der), this ik processed s the massage header,
and the subsequent dato ks processed o5 the
primary message. In other cases, from the first
plece of Gatq, dotais processed os the primary
message.
in Mode 2, specify the primary messoge in the
following format:
MaxiCode Mode & Postal code (1- fo 2-digh number) GS:(Ax1d) 8O
couniry code (1- 1o 3-aight numben G\ xId)
Service Class code (1- to 3-gight numben
in Mode 3, specify the primary messoge in the
following forrmat:
Postal code (1 1o 6 pleces of dota convertible
by Code Set A) GS:(\xId) O country code (-
1o 3-cight numben GS(\x1d) Service ckass code
{1- 10 3-diglt numbern

GS1 DatoBar Stacked Conver! the character siing 1o the siing iy UT- |
8. apply the escope sequence, and then
ancodea the sting.
Specify a 13-digit giobat frade e number
{GTN) not inchuding an appication Kentifler
(Al or g check digt,
Convert the character siring 1o the sking in UTF-
8, apply the ascape sequence, and then
gncoda the shing.
You can enciose an appiication identifier (AQin
parentheses. The parentheses are used s HRY
piint characters ond are not encoded Os dota.
To encode sach of the following characters,
specty two characters starting with the

&St DatoBar Stacked
Omnidirectionot

G51 DataBar Expanded Stacked

character "™
FNCL {1

: {
X D

Fig. 85

U.S. Patent

Aug. 4, 2015

Constant {(lype)
SYMBOL_PDF4T7_STANDARD

Sheet 53 of 85

US 9,098,226 B2

2D-Code type

Standaord PEF4Y7

SYMBOL_PDFR417_TRUNCATED

Truncated PDF4Y7

SYMBOL_QRCODE_MODEL 1

QR Code Model 1

SYMBOL QRCCDE MODEL 2

@R Code Model 2

SYMBOL_MAXICODE_MODE 2 MoaxiCode Mode 2
SYMBOL_MAXICODE_MODRE_3 MoxiCode Mode 3
SYMBOL_MAXICODE_MODE_4 MaxiCode Mode 4
SYMBOL_MAXICODE_MODBE_& MaxiCode Mode b
SYMBOL_MAXICODE_MQODE_S MaxiCode Mods 6

SYMBOL_GS1_DATABAR_STACKED

&GS DadaBar Stacked

SYMBOL 81 _DATABAR_STACKRD

OMNIDIRECTIONAL

&GSt DataBar Stacked
Omnidlirectional

SYMBOL_G31_DATABAR_EXPANDED_STACKED

&S DotaBar Expanded Stacked

Fig. 86

Descrpfion
LEVEL Q PORSYT error corechion level O
LEVEL 1§ PDEAYT error oorechion fevel
LEVEL 2 PDORATT arror oorechon vl 2
LEVEL G POF4TT emor comection el
LEVEL 4 POF4TY error onwrection fevel 4
LEVELLS PDF4YY error cogechion fowal b
LEVEL & POFSYT eror cogrechtion ipvel 6
LEVEL 7 FDFSTT enor oorection fevsl 7
LEVEL 8 PDFESTT arror oorection isvsd 8
LEVEL L &R Codde error corsadinn level L
LEVEL M &R Code error comaction level M
LEVEL © QR Code enmor corraection level Q
LEVEL _H R Codde error corraction level H

LEVEL _DEFALRY

Drafaull level

Fig. 87

U.S. Patent Aug. 4, 2015 Sheet 54 of 85 US 9,098,226 B2

<goript type=“text/javascript® srocz“epos-print~2.x.x.js></script>
<soript type="textijavascripts>
g
function buildM¥essage{} {
var builder = new epson.ePOSBuilder(}):
builder.addSymbol { 'ABCDE', buildex.SYMBOL_PDF417_STANDARD) ;
builder.addSymbol { 'ABCDE', builder.SYMBOL_ QRCODE MODEL 2,
brilder.LEVEL Q)
builder.addSymbol (*208063840\x14850\x1400 1\ 2\ 2047,
builder . SYMBOL MAXICODE MODE_2};
builder.addSymbol {T0201234567890%, builder.SYMBOL_
G81_DATABAR STACKED) ;
builder.addSynmbol (*02012345678%80°,
builder.SYMBOL GS1 DATABAR STACKED OMNIDIRECTIONALY);
builder.addSymbol ({01} 02012345678%03°,
builder.SYMECL_GS1_DATABAR _EXPANDED STACKED);
}
$f—
<fseripts

Fig. 88

Constant {style) Dascription

LINE_THIN Solid fine: Thin
LINE_MEDIUM Sofid fine: Medium
UNE_THICK Solid fine: Thick
LINE_THIN_DOUBLE Douldle line; Thin
LiNE_MEDIUM_DOUBLE Doubls line: Medium
LINE_THICK _DOUBLE Double line: Thick
undefined (When not specified) Solid iine: Thin

Fig. 89

<gcript type="text/javascript® src="epos-print-2.x.x.js"></script>
<script type="text/javascript”>
<t—-
function buildMessage{) ¢
var builder = new epson.eP0SBuilder{);
builder.addHLine (100, 200, builder.LINE_THIN_DOUBLE);
builider.addHLina {400, 500, builder.LINE_THIN DOUBLE);

}
/7-=>
</script>

Fig. 90

U.S. Patent Aug. 4, 2015 Sheet 55 of 85 US 9,098,226 B2

Constant (style) Description

LHNE_THIN Saolid line: Thin
LINE_MEDILIM Sodid line: Mediurs
LINE_THICK Solid line: Thick
LINE_THIN_DOUBLE Doubdle fine: Thin
LINE_MEDIUM _DOUBLE Doubile fing: Medium
LINE_THICK _DOUBLE Doubdle fine: Thick
undefinaed When not specified) Sofict lins: Thin

Fig. 91

<script type=‘"text/javascript" src="epos-print-2.x.xX.js"></script>

<script type="text/javascript”>

<l--

function buildMessage{) {
var builder = new epson.ePO0SBuilder(};
builder.addVhineBegin(100) .addViineBegin{200);
builder.addFeedUnit {100);
builder.addVLineEnd {100} .addVLineEnd {200} ;

}

//-=>

</script>

Fig. 92
LINE_THIN Solid ine: Thin
LINE_MEDIUM Solict line: Maokum
LINE_THICK Solid ing: Thick
LINE_THIN_DOUBLE Double ling: Thin
LINE_MEDIUM_DCUBLE Double ling: Medium
LINE_THICK_DOUBLE Doutile fine: Thick
undlefined (When not spacified) Solict ine: Thin

Fig. 93

<gcript type="text/javascript®™ src="epos-print-2.x.x.3js“»</script>

<script type="text/javascript">

<t--

function buildMessage() {
var builder = new epson.ePOSBuilder(}:
builder.addVLineBegin{100) .addVLineBegin{200};
builder.addFeedUnit (100);
builder.addVLineBnd (100} .addVLineEnd{200};

}

Jf >

</script>

Fig. 94

U.S. Patent Aug. 4, 2015 Sheet 56 of 85 US 9,098,226 B2

<script type="text/javascript” sre="egpos-print-2.x.x.js"></script>

<script type=“text/javascript"»

<t

function buildMessage() {
var builder = new epson.ePOSBuilder{):
builder.addPageBegin{};
builder.addText (*ABCDE");
builder.addPageBnd();

}

/==

</script>

Fig. 95

<script type="text/javascript® src="epos-print-2.x.x.js"></script>

<script type="text/javascript">

<t-—

function buildMessage() {
var builder = new epson.ePOSBuilder();
builder.addPageBegin();
builder.addPageiArea {100, 50, 200, 30);
builder.addText ('ABCDE');
builder.addPageEnd();

}

/==

</script>

Fig. 96

Constant (din} Description

Left foright
DIRECTION_LEFT_TO_RIGHT(default) (No rotation.Data is printed from the top left
corner to the right.)

Bottom to top

(Counterclockwise rotation by 90 degrees.
Data is printed from the botfom leff comer
to the top.)

Right fo left

DIRECTION_RIGHT_TO_LEFT {Rotation by 180 degrees.Data is prinfed
from the boltom right corner {o the left)

Top to bottom

(Clockwise rotation by 90 degress.
Data is printed from the top right comer fo
the bottom.)

Fig. 97

DIRECTION_BOTIOM_TO_TOP

DIRECTON_TOP_TO_BOTTOM

U.S. Patent Aug. 4, 2015 Sheet 57 of 85 US 9,098,226 B2

<script type="text/javascript® src="epos-print-2.x.x.js"></script>

<gcript type="text/javascript®>

LS

function buildMessage() {
var builder = new epson.eP0SBuilder();
builder.addPageBegin{);
builder.addPageArea {100, 50, 30, 200);
builderxr.addPagebirection{buildex.DIRECTION_TOP_TO BOTTOM);
builder.addText (*ABCDE');
buildex.addPageEnd({);

}

f /==

</script>

Fig. 98

<script type="text/javascript" src="epos-print-2.x.x.jis"></script>

<script type="text/javascript®s>

<) —=

function buildMessage{) {
var builder = new epson.eP0SBuilder({):
builder.addPageBegin() s
builder.addPagedrea(i00, 50, 200, 100);
builder.addPagePosition (50, 30);
builder.addText{'ABCDE");
builder.addPageBnd();

3

fé-->

</script>

Fig. 99

Constant (style) Description

LINE_THIN Solid fine: Thin
LINE_MEDIUM Solid line: Medium
LINE_THICK Solid line: Thick
LINE_THIN_DOUBLE Double line: Thin
LINE_MEDIUM_DOUBLE Double line: Medium
LUINE_THICK_DOUBLE Double line: Thick
undefined . .

. Solid kine; Thin
{When not specified)

Fig. 100

U.S. Patent Aug. 4, 2015 Sheet 58 of 85 US 9,098,226 B2

cgrript types text/javascript” sro=spos-print-2.z.x.iz’></script»
<soript types=*bext/javascript®s
e
function buildMessage () {
var nuilder = new epson.ePl8Builder(};
builder.addPagelegin{};
builder.addPageline {100, ¢, 500, ¢, builidex LINER THIN):
huilder.addPageinid{}y
3
Pl

</goripi>

Fig. 101
LINE_THIN Solid line: Thin
LINE_MEDIUM Solid fine: Medium
HNE_THICK Sclid line: Thick
LINE_THIN_DOUBLE Doubie ine: Thin
HNE_MEDIUM_DOUBLE Double line: Medium
LINE_THICK_DOQUBLE Double line: Thick
undefined (When not ecified) | Solid line: Thin

Fig. 102

<script type="text/javascript® src="epos-print-2.x.x.is"></script>
<script type="text/javascript*»
<t
function buildMessage{} {
var builder = new epson.ePOSBuilder(};
builder.addPageBegin{);
builder.addPageline {100, {4, 500, 200, builder .LINE_THIN DOUBLE};

builder.addPageBnd({};
3
fl-=>
</script>
Fig. 103
Sefling Description
Cut without feeding
CUT_NG_FEED
-7 (the paper is cut without being fed.)
Feed cut
CUT_FEED e _ . .
{The paper is fed to the cut position and then s cut)
Cut reservalion
CUT_RESERVE {Prinfing continues untll the cut posttion s reached, at
which the poper s cut)
undefined Feed cut
{When not specified) (the paper is fed o the cut position ond then i cutl.)

Fig. 104

U.S. Patent Aug. 4, 2015 Sheet 59 of 85 US 9,098,226 B2

<gcript types="text/javascript” sre="epos-print-2.x.x.3js"></script>
<gcript type="text/javascript >
<l e
function buildMessage{} {
var builder = new epson.ePNSBuilder{);
builder.addCut {buildex .CUT_FEED);
}

>
</script>
Fig. 105
Sefling Description

DRAWER 1 Pin 2 of the drawer kick-out connecior
DRAWER 2 Pin & of the drawer kick-cut cornector
undefined . .

. Pin 2 of the drawer kick-out connector
{When not specified)

Fig. 106

Setling Descripfion

PULSE_100 00 s
PULSE_200 K0 s
PULSE_300 300 ms
FUILSE_400 40 ms
PULSE_S00 50 ms
unciefined
{10

(When not specified) s

Fig. 107

geoprinb-2.x.x. 38 > goriphs>

H L ePOERuilder it
bu&lder adﬁpuise(bux exr URAWER 1, builder.BULSE_31040);

Fig. 108

U.S. Patent Aug. 4, 2015 Sheet 60 of 85 US 9,098,226 B2

PATIERN_NONE Stop
PATTERN_A Paltern A
PATIERN B PafternB
PATIERN_C PatternC
PATTERN_D Pattern D
PATTERN_E PatternE
PATTERN _ERROR Error sound pattermn
PATTERN PAPER END Pattem wher there is no paper
undefined
{When not specified) Pattern A
Fig. 109
0 The buzzer does not stop.
10268 Number of repeciis
undefined One fime
{When not specified)
Fig. 110

<soript type="text/javascript® sre=‘spos-print-2.x.x.3s"></script>
<script types="text/javascript”>
<}
function buildMessage(} {
var builder = new epson.eP0SBuilder{};
builder.addSound(builder . PATTERN A, 3);

}
S f =
</script>

Fig. 111

<goript typs=Ttext/javascoript® sre=Tegpos-print-2.x.x.is < seript>
caaript type="text/javascript® >
<
function bulldMessage{] {
var builder = new epson.ePOSBuilderi);
vay doc = builder.toStying(};
3
Ffm
«/moript>

Fig. 112

U.S. Patent Aug. 4, 2015 Sheet 61 of 85 US 9,098,226 B2

Constant Description
HALFTONE_DITHER {defaulh) Dithering, suitable for printing graphics only.
HALFTONE _ERROR_DIFFUSION Error diffusion, suitable for printing text and graphics together,
HALFTONE_THRESHOLD Threshold, suitable for printing text oniy.
Fig. 113

cgeript types"hext/javasoript” sresepos-print-3.x.m. s s<soripks
<geript type="text/javascript">
e
function buildMessage{) {
var builder = neow epson.sPOSBuilder(};
var canvas = document . getBlementById{‘canvas’};
if {vanvas,getlontext) ¢
var aontext = canvas.getlontexb(ad'i:
xilder.halftone = epos.HALPTONE BRROR DIFFUSION;
ilder.addimage{context, &, ¢, canvas.width, canvas.hsight);

¥

3

Jiemn
<{scripts

Fig. 114

wgoript ftypes“text/iavascript® srostepos-print-2.x.X%.3s ></goripts
<ZTript typss’text/javascoripb™s
S I
funprtion buildMessage () {
vax buildexr = new epson.,ePOSBuildex{);
var canvas = document . gelBlementById{‘canvas'};
if {canvas.getContext)
vay context = ganvas.geblonbexb {2471
builider.brightness = 2.2
huilder . addImage {context, 4, ¢, canvas.width, canvas.height);
H

N
3
r
F 7 o
P -

“iseripts

Fig. 115

<script type=“text/iavascript® src="epos-print-2.x.x.is*></script>
<gcript type="text/javascript®>
<i-—
function buildMessagse{) {
var builder = new spson.eP0SBuilder():;
builder.addText{"ABCDE®);
ullder .message = *4;
3
ff-->
</script>

Fig. 116

U.S. Patent Aug. 4, 2015 Sheet 62 of 85 US 9,098,226 B2

<goyipt typs="text/javascript” sycz“epos~print-2.x%.%X.is°»<fgoxipt>
cscript type=“text/javascript“>
R
function sendMessagei{} |
var address = ‘http://182.168.182.168/cgi~-binsfepos/s
service.cgir?devid=local printer’;
VAr epos = new epson.ePO8Print (address);

}
PRS-
<{script>

Fig. 117

“seript bypes text/iavascript” sroztepos-print-2.x.%. jsV><ssovipts
<goript types“toxt/favascript's>

P

function printHeilowdWorld{) {

wvay tmildar = new spson.ePOSBullderdi):
tilder . addTent (" Hellin, Worldiin'i:
builder.adddur il ;

var request » bullider.toStringl)s

var sddresr » hREp:f/1%2.168.192. 168 /cgli-binfepos/sservine. ngitdavidaiacal printer
TAY APoR s oW apson. sPOSRrint (sddrees) ¢

epos . onrecsive = function {res) i alert(res.success): };
epos . onerrox = fumction {wrr} { aleri{exxr.status); };
*pcs . .send{veguent}

H

LR

</scriptvs

Fig. 118

<script tvpeo=‘text/ijavascript” srozgpos-print-2.xX.xX.js ></script>
<gcript type="text/javascript >
LS
var address = ‘hitp://182.168.182.168/cgl-binfepossservice. cgi?daevid=local_printex(
var epos « new epson.ebOSPrint {address);
epos . oncoverapen = funchtion {} {
alert{’coverocpen’};
3;

function startMonitor{} {
epox.openl};
¥

function stopMonitor() {
epos.closel}:

}
ff o
</script>

Fig. 119

U.S. Patent Aug. 4, 2015 Sheet 63 of 85 US 9,098,226 B2

<gscript type=‘°text/javascript” src=‘epos-print-2.x.x.js’>»</script>
<script type="text/javascript®>
<f
var address = ‘http://192.16B.182,168/cgi~bin/epos/service.cgizdevid=local_printex|
Var spog * new spaon,aPOSPrint (address);
spos . oncovercopen = function () {
alexit(coveropen'};
¥

function startMonitox(} (
spos . apen{};
}

function stopMonitor{) ¢
epos.clnsea();

¥

$h -

<fseript>

Fig. 120

<script types-“text/javascript® sro="epos-print-2.x.x.3js"></script>
<script typez"text/javascript»
LY ——
var epos = new apsoch.ePOSPrint{);
apos.address = 'http://1%2.168.1%92,.188/cgi-bin/epos/
service.cgi?devid=local _printex’;
epos.oncoveropen = function ()} { alert{'coveropen’}; }:
epos.openil:

Fl-->
</script>
.
Fig. 121
<gcript Lypes'text/iavascript® sre=z‘epos-print-2.x.%.3s o/ /gCript>
wsoript typesttext/iavascripb >
E3 Xl

vay address = "hUip: /182 188,192 188/ cgi-binfeposfservice . cgi?devid=loral_printer’
VRY epog = new epaon.sPOSPrint {addressg);
epos . oncoveropen = function {3 { alari{'coveropen’i: }:
spon . openil
zlaxt {epos.enablisd)};
fﬁ*~>

</aoripts

Fig. 122

<soript btypesMtext/ijsvascript? srosCepos-prini-2. ok, is?radsoript>
oript fypesttexntdiavascript

var addrvess = Chbtp: F7192. 188,100 188 fegi-bindepos/ service. cgltdevidslocal _printer f;
VAL eRpos =« new epaon.ePQ¥Print {address}y

epoy.interval = 1000y

apos. oneoverepsn = funcvion i) { elarv{ ooweropen’d: }:
Gpos opan i)

-

< seripty

Fig. 123

U.S. Patent

Aug. 4, 2015

Sheet 64 of 85

o
QK

b~

var address = ‘hibp: /182,168,182, €8 /cgi-~bin/apos/seyvice. cgitdevid=local _printer';
YRY 2pOs = new epson,ePOSPrint{address);
spos.onofiline = function) {

alert{epos.status};

i
@pog . openil s
F i

<igeript>

ript typesTrext/iavascoriph” sroztepos-print-lla.xw.dgteaseoripts
<uCript typesTtext/javascript>

SUCTOK Prirst resqult Booleon

code Emor code Shing

stabus Siohss Number
Fig. 125

Decrpion

frue or 1 Printing succeeded.
fodse o1 0 Printing falled.
Fig. 126

Value
EPTR_AUTOMATICAL

Desctiption

An automatically recoverable enos cccurrad

EPTR_COVER_COPEN'

A cover open error occurred

‘EPTR_CUTTER'

An autocuttsr enror occurred

EPTR_MECHANICAL

A mechariodd error ocourradd

EPIR_REC_EMPTY

No paper in ol paper end sensor

ERTR_UNRECOVERABLE

An unrecovercble eror occurred

‘Schermatmos’ The request document contains a syntax error

DeviceNotEownd Thiez girder with the specified device 1D dees not
2xigt

‘PrirdSystermniror An error occurred on the printing system

EX_BADPORT An enor was detected on the communicotion port

'BX_TIMEOUT A print imeout occuned

Fig. 127

US 9,098,226 B2

U.S. Patent Aug. 4, 2015 Sheet 65 of 85 US 9,098,226 B2

Constant {status) Description

ASB_NO_RESPONSE No response from the TM printer
ASB_PRINT_SUCCESS Prinding is successfully completed

ASB_DRAWER KICK Status of the 3rd pin of the drawer kick-out connector=

age
ASE _OFF_LINE Offtine

ASR_COVER_OPEN The cover is open

ASE PAPER FEED Paper is being fed by a paper feed switch operation
ASB_WAIT_ON_LINE Waiting to be brought back online

ASB_PANEL_SWITCH The paper feed switch is being pressed (ON)
ASE_MECHANICAL ERR A mechanical error occurred

ASR_AUTOCUTTER ERR An autocuter error occurred

ASB_UNRECCVER ERR An unrecoverable error occurred

ASB_AUTORECOVER_ERR An autormotically recoverable error occutred
ASB_RECHPT_NEAR_END No paper in rell paper near end sensor

ASB RECHPT END No paper In roll paper end sensor
ASR_BUZZER A buzzer is on (only for applicable devices)
ASB_SPOOLER 15_STOPPED | The spooler has stopped

Fig. 128

<goript types‘text/iavaseript” srezepos-print~2.x.x.jaz"></soviphs
<goript types"text/javascript'>

<l

functicn printHellowWorld{) §

var bullder = new epson.=POSBuilderdy;
builder.addText (*Helle, Worldiin’}:
budldex . addCut{};

var raguest = builder.toString{};

var addrmss = hbip://1¥2.168,192.168/ogi-binsepos/sarvice.cgirdavid=local printar*;
var epos = new apson.eROSPrink (address};
apon.onreceive = function {res} (
VAY SUNCeSS o TeS.Fuccess;
var o0ds = res.oods;
way statuz = ras.status;
alert {guccess);
3
epos . fend {reguest} 5
3
F L
<faeript>»

Fig. 129

U.S. Patent Aug. 4, 2015 Sheet 66 of 85 US 9,098,226 B2

_ Popory] Name | Onjciyns

status HTTP Status Number
responseiext Response text String

Fig. 130

<seript typex"text/javascript® sroz’spos-print-2.x.x.js"»</script>
<geript types‘texbt/sjavascript’>

L

function printHellowWorld() (

var builder = new epson.ePOSBuilder(};
builder.addPext {*HBello, Worldiin'jy;
builder.addoub {};

var reguest = buildex.toString();

var addrass = ‘htip://192,168.133.168/cgi~bin/apoa/sarvice.cgivdevidslocal printexr’;
YAr #pos * naw apson.eaPOSPrint {address);
apon.onerror = funcbion {exr) {
vay setatus » exry.status;
var texdt = err.rasponsaext;
alert (sbatus);
¥
epog . send{regueat)
}
e
</scripts>

Fig. 131

<geript types'text/javascript® srezepos-prink-2.x.x.3s r</script>
<script types=“text/javascript®s
S
var address = "hitp://192.168.182.168/cgi~bin/epon/service.cgi?devid=local printex'|;
var epos = new epson.ePoSPrint (addresa);
epos.onstatuschange « function {(status) (
alert (status);

b4

epos . open}
Z T
<f{script>

Fig. 132

<gscript types"text/javascript” sro=“epos-print-~2.x.x.3is"»</script>
<goript bypesTtewb/javasoriph®s
<t

var address = ‘higp://192.168.182 168/ cgi~binfapos/service. cgi?devid=lncal printer;

var apos = new spson.sPOSPrint (addresa);
epos.ononline » functicn () {
alert(’online’};
13
epos. opaeni)
i

<fseripb>

Fig. 133

U.S. Patent Aug. 4, 2015 Sheet 67 of 85 US 9,098,226 B2

vay address = Thibp: /182 148,182,168 Taocal printesr

YAY SPOR = NEW wpéln~ﬁ9989rxnt(addrﬁss}:
epoa.snoffiing = funchion ()
alexb ! " offiine’);

apns ., aperi) ;

fmoripts

var address = ‘hitp:/ 182,168,182, 168 /cgl

vaxr epos = new epson.sPOSPrint {addrese};

spos . onpoverolf = fumction {} {
alext { ‘powaraff)y

Fig. 135

<goriph types

~goript types
2w
vay xddress = ‘hitp:f/ LEEL 182,168 0y
VAT SPOS BHW epscn.aPDS?rint{aﬂarasz)3
epos .ongovernk = function {} {
alext{tcoverak '}y
¥;
apoa . e |

1,

Fig. 136

var addrsss =
var spos = new apaon.aPOSFrgnt(addrasa};
spos . euooveropsn « funetion {) (

alert { ‘wovsropen’);

Fig. 137

U.S. Patent Aug. 4, 2015 Sheet 68 of 85 US 9,098,226 B2

var addesse = Chthp: /7 152,168,192 188 fegi-bindapo
var epos » new opson.ePUSRrint {addreusn);
BPOR . Oupagerak = funstisn {3 {

zlerh{‘paperak’};

el _parinter’

openil;

wvar address = Thibp://1%2 168,122,188 ogi-b
 BPpOR » new apson,=POAPrint {addrsss)y
apos.onpaperneaxend = funotion 1} {
giart { ‘papsrnsavand') ;

soal_printer

ji

apos. opendl;
Py
</aoeript

Fig. 139

=k &y
E23 tvpe ,.a\awvx*pt“
R

vay address = Thtup: AAIRE01E8.

'_;
iy
.»-u
fag

dar

'.\.

YRYE WPOd » naw epsun.a?bﬁ?x*nt(aadxes)
spog.onpaperend = Funchion {§ {

wxisrb{ "papesrenid)y
33

‘ig. 140

C!lpt type="
oript btypes

Yapos-print-2.x.x. dn e/ soripts

vayr address = “http://IR2.368 192,168 /cgi~binsepus/servics. ogitdevidsloral printer’
AT RpoR * naw spson,.sPOEPrint {address) ;
epos . .ondrawerclosed = funchkion {3 {
alevt { ‘draverclosed’);
¥:
apoa.openil;
F

soyipts>

/
ol

Fig. 141

U.S. Patent Aug. 4, 2015 Sheet 69 of 85 US 9,098,226 B2

var addvess = ‘hitp:/ L83, 188,182,148 -
var epos = new epron.ePOSPriant{addressly
spos . ondraveropen « funebion {} {

aimri{ ‘drawerunpen’};

cal printer’

Fig. 142

wgoript
<soript &

[CR RO

yeasttext igvaseript® srostepog-print-loun.dsteaigoripts
ypes=t text S tavasoriptts

fanction priatlanvasil |
var addvess = 'hitp:f/182.3168.192. 188/ cgi~bdniuponssnrvice. cgitduvidsinocal printert;
var opns = ngw epann.CanvesPrint {addresn);

I
g

¥
e
wfRTriphe

Fig. 144

ue o Cuts the paper offer printing
s OF U Doss not out e paper Ofter peinting
wriief Doss not out the poper ofter peinting

Fig. 145

Sefting Decription

MODE_MONGC Monochrome (heo-tone)
MODE_GRAYID Multicle Tonas (16-Tone)
undefined onochicme Gwo-tfong)

Fig. 146

Ver &&&rasx S ‘hhtp f;&%z 188,133 188 Fogl-hindeposfenreion. ogivdsvid-locel printsr;
war canvar = documsat . getRlenantByIA{Cuylanvar <}y

wRT RPOS © new spaon.CanvesPrist (address);

Fig. 147

U.S. Patent

Aug. 4, 2015

Sheet 70 of 85

Corghuctor
| ConwasPrint | intializes an aRCS-Print Convas AP{ obiect,
s thiod
oing Prints on HRMLS Qo innogs.
Enoblag stotus event opanation
open
{irever 1.2 and ioted)
close Taabias stodus event opeation
(i Ve 1.2 ond iodan)
Property
wicress URL ol the printer Gn Ve 1.2 and iate)
Enatdingfdisaling of status evant
endbled g Ver ?2 and ianif)
, Printer stotus updote pdenvl
ndervad {in Ver, 1.2 ardd iate
siatus Sratus Gn v 1.2 and iden
Riastef imags haffione processing methad
haiftone .
(i ver, 1.2 ardtiched
) Roster imGge Dighiness corredhion volue
brghtness ‘
{inVer 1.2 and iatern
Event
ORceive RaspOnss messages recaint event
DTENEOL communioniion enor svent
onsictuschange Stotus change event §in Ve, 1.2 ond iaten
ononing Ording svent (n Ve 1 2 and icten
onoifing Cffine avent (n Vi, 1.2 andicten
onpowerott Nonsesporse everd {in Ver 1.2 ond ioten
ONCOVRION over cinse avent in ver 1.2 andicten
CRCOVOIONen Cowel e evant (n Ver, 1.2 arngt inlen
Pager rercining svert
ONPOpSIOk {n Ve, L.Z2and ilen
onpapameareryd Papes naar end event (n Ver 1.2 ondicten
oanpoparend Paper ond avent {n Ver 1.2 and inten)
ondwerciosed Brower ciose avent (n Ve 1.2 and igted
QnCIgwWeIopen Drowar open event dn Ve 1.2 and iaten)
Constant
ASB - Responge document staius
HALFTONE * Hoftone tyoe
MCOCDE * Color mode

Fig. 143

US 9,098,226 B2

U.S. Patent Aug. 4, 2015 Sheet 71 of 85 US 9,098,226 B2

AL SPOS » DY epson.CanvasPrinti}:
spwk address » ’https £FL92. 158 3&2 lse?ﬁgivbiufepas!sarvica egirdevid=icoal prinker‘;

= Funotion

3w s

L8Rt

WA Wi RV 5 . 5 PR
VEY QPUB » Dew e};sou Camras?xint{a&&mss},
E G x:tma* open = funotisn 1P § alaxbitcoversgenti:)

apos.openil;

alext {apos . .enablad) ;

Fig. 151

U.S. Patent Aug. 4, 2015 Sheet 72 of 85 US 9,098,226 B2

sax add ; Thrtyme s
VRY OPNY = NEW GLROK. Canvaa?rint(aﬂéznasiv
epos interval = 3008;

= Fanonis

P
Lon X

b 5o ran q..\:“ i oy oo L
Jogiobins epue i servize. opitdevidslonal _printer

TRYL ﬁpﬁﬁ o DY epsan Canvas?rint{adﬁrasa},

S5 sfEiing = faaotion {3 4

alnrt {opwe. statusd ;

Fig. 153

Constant Description
HALFTONE_DITHER Ditharing, suitable for printing graphics only.
HALFTONE_ERROR _DIFFUSION Error diffusion, suitable for printing text and graphics fogether.
HALFTONE_THRESHOLD Threshold, suitable for printing fext only.

Fig. 154

VB SpGS « BRW epson.CanvessPrint (xddress);
spos, Balftone «© spos, BRLPTORE RIARCE DRIFFOSIUNN;
Sros . print ornvast

Fig. 155

sro=tapsa-grint-%. . x et/ goripts

t—Lza;au,« sezrvice. ogivrdsvidelocal _printey;

i d)u&ﬂ?d? Yy

TRY epiis = new epmmon.lanvasPrint {addrens};
epue, halfiuns » ofass . HALPTORE RANOR DIPFUIION:
epos. printio’nvesd

Fig. 156

U.S. Patent Aug. 4, 2015 Sheet 73 of 85 US 9,098,226 B2

Ocjctype

BICCES Print rasugt Booleon
vy Ervor oode BHEEY
stoyfus Stofus MNugrbar
Fig. 157
Value Decrphon
s or PHnEngG SUCCSedad.
folse or 1 Brinting fodied,
Fig. 158

Value
‘ERTR_AUTOMATICAL

An quiomaticolly recoverabile enor ocourred

EPIR_COVER OPEN

A cover open enar occured

'EPTR_CUTER

An aulocutier error occured

EPIR_MECHANICAL

A machanical error occuned

EPTR_REC_EMPTY

No paper in ol paper end sensor

EPTR_UNRECOVERABLE'

A unecoverable sttt aocured

‘Bchematmor! The request document confains g syntax enor
‘DeviceNotround’ The prnder with the specified device 1D does not exist
‘BrintSysternknoy’ An etror accurred on the prnting system
EX_BADPORT An error was detecied on the communicolion port
BEX_TIMEQUT A print timeout occwred

Fig. 159

U.S. Patent Aug. 4, 2015 Sheet 74 of 85 US 9,098,226 B2

ASB_NO_RESPONSE No response from the T™M printer

ASB_PRINT_SUCCESS Prinding is successfuly compisted

ASB_DRAWER_KICK Status of the 3rd pin of the drower kick-out connector =
"

ASB_OFF_LINE Offine

ASB_COVER_QPEN The cover is open

ASB_PAPER FEED Paper s being fed by o paper feed switch operation

ASB_WAH_ON_LINE Waiting to be brought back onfine

ASB_PANEL SWHICH The poper feed switch s being pressed (ON)

ASB_MECHANICAL_ERR A mechanical error occurred
ASB_AUTGCUTTER ERR An oudociter enor occurted
ASB_UNRECOVER_ERR An unrecoverable enor occurred

ASB AUTORECOVER ERR | Anautomatically recoverabie seror occured
ASB_RECEIPT NEAR_END No paper in roll paper near end sensor

ASB_RECHIPT_END No paper in il paper and sensay
ASB_BUZZER A buzzer is on (only for applicable devices)
ASB SPOCGLER IS STOPPED | The spooier hos stopped

Fig. 160

% po - L T ST S
FROB-RTInt- 2.0 K. Es v noripts

Fumotiog o AR 2T
sy addresy = ‘hites/FLSE 88,290 aR/ogi-bisdepons sarvica.cuitdavidalooal printert;
var venvas » Jdooument.getElementBy Id{ selanvas®);

WAL SpOE w NS epRon., CasvrsPrint (eddresn y
sy, onveesivs = funotion {resd §
VRY RUSQRHBE ® YRE.BRECRRE;
way code = res.oodw;
war stabur = res.statwey;
wrisrt{puconrel;
¥:
apon.print{canvssl;

Fig. 161

U.S. Patent Aug. 4, 2015 Sheet 75 of 85 US 9,098,226 B2

Objectpo

shatus HITP stafus Mumbey
resmonsaient Rasponces eyt g

Fig. 162

¢

funchion printfanvas ()
var address = ‘NbkLp:/lAi92.168.192.168/egi-binsepus/servica cgitdevid=local printax ;
war canvar = SonwmEnt . geiBlementById (‘mylanvas),

vay epos = new mpson.lanvasPrint(addrars);
spos . owerrsr = Function {exr} {
vy status = wyy.status;
var bext = ary.responzefant;
alext{status);
3z
epos.prink (canvaal;

Fig. 163

vay addresy = ‘hiip: /182,168 . 192 188/ cgd ~bin/epus/f reyvice. cglitdevide=ioral printer’:
AT Spos = new epson.lanvasPriot{address);
wpos.onstatuschange = function {status) {

rlext {statusi;

Fig. 164

.

waoriph types'tewt/Javascript” srostepos-print~2.x.%. dst e Beripts
<goript bypesthext/lavsscriph’s
2} e
var epoi = new epion.CanvasPrint{addrens);
epos.ononiine = functiom {}
alert{‘online’};
¥

epos . apent};

Fig. 165

U.S. Patent Aug. 4, 2015 Sheet 76 of 85 US 9,098,226 B2

VI

wRE epos » Bew spson.fanvasBrintisddresed;
spes onoliling » funebien {}
wisrt{toffiinest;

.‘;C\i :: <

VR epos =

epus . onpowerstl = functiom {3 {
elexh {*poweruist iy

Fig. 167

TRT A : Eupe S SLBD VLR IRE L IS e
TRE epns » new epson.lanvasPrint {addos
epos. snooverck = function {3 {

alert{ ‘vovessk');

.

»n

Fig. 168

R i3 ik
VAL 8pos = onew spson.aovasPr
BROS . opoowropen = funchlon {1}

aslext{cowaropen' iy

Fig. 169

U.S. Patent Aug. 4, 2015 Sheet 77 of 85 US 9,098,226 B2

ke = Cht L
TRY spos ® new epson.fanvasd
spog . onpaperol » function (3 4

slexrt{ papsrok’);

VAL SpON % RBeW epson.fanvasiriat {adiress:
wpos onpapesrnesrend <« fupotion {3 {
slert{ ' papernsarend’ iy

address =

1

spor.onpeperend = Yuanobion {3 {
sinrt{ paperand®}

I3

Fig. 172

U.S. Patent Aug. 4, 2015 Sheet 78 of 85 US 9,098,226 B2

¥oa [
TEY apes » new epson.anvasPristisddressiy
epos . ondrawerslosed = Junetion {§ {
slert{draverciosad s

Fig. 178a

addoess = ;
var apow » pew epsan,SanvssPrint {address);
epas condrevercpen » funcbion {3}

slert (draveropen')

Fig. 173b

U.S. Patent Aug. 4, 2015 Sheet 79 of 85 US 9,098,226 B2

| Common« 169

2 A I

. Adign Linespe Rotate
| Text {Printer Font)* 171

V: o (e

Lang Fant Position Smocth

ARARIET

Size Double Style

MN_-167

Paper Feed “ 173

Imaga KY Logo
Bar C&de "\/177

eatccde Symboi
Page Made © V179

o Em

K[tart Ares Direction Position
End
Others ¢ 181

EEDE

Cut Drawer Buszer Tmd

U.S. Patent Aug. 4, 2015 Sheet 80 of 85 US 9,098,226 B2

Preview

Model /183
TM-T88V-1 (80mm)||' ¥

Print
IP address of the intelligent printer (Intelligent Module)

192.158.192.144 (™\~185

Device ID of the target printer
Station_1_Printer [187

Print timeout (milliseconds)
6000 189

Monitor the status
191

Fig. 175

Descrpton

Miodet Specify the modet of the printer 10 be wsed for printing,
The Preview screen resizes according to the paper width
sef to the modsl.

{© address of the nteiligent printer Soeciy the 1P addess of he prinder,

e sure 1o spacify s fem,
Devdce iD of the target printer Specify the device 1D of the prnter.
Be sure o specify this item.

Print Bmeaut (milfsecondsy Specify the prnt limeout fime in millseconds.
Ths reoximurn voiue i S0000 {60 seconds).

Monitor the status When this checkbox s checked, the prinfer's status is
monitared.

Fig. 176

U.S. Patent Aug. 4, 2015

Sheet 81 of 85

US 9,098,226 B2

cgmen N 0
=
Algn uineaps Retste

Text {Printer F:}nt}m 17

= M E v
Comt position Smoeth
l’i ARIET
Sk Gouble Styke Tant
Papar Fead LI 173
E P 3""%
"'
£y Umit e,k ne
’75

Ymage NV Legu

Ba nde }77

Eanade & r\bm

; Praview API XML Print

Setting

E*«{gmgzig %;w&

Fiscala to Fit Papar Width

pagn Mode A/\/179
W B m
| n
}57 104 Ared Directior Mosivon
P
End
others 4\~ 181
EEDD
Cat Drower Boxxer Long
“ g o
167
Menu Area

Edit Arca

199X

Fig. 177

U.S. Patent Aug. 4, 2015 Sheet 82 of 85 US 9,098,226 B2

¥1, 000
Fig. 178

} cPOS-Print Editor

Mg

Thank you!t!
Orange
Mineral water

11P Address

US 9,098,226 B2

Sheet 83 of 85

Aug. 4, 2015

U.S. Patent

6LY "SI

Ies|)

SEIWNGIMUG OP LG PT TE-90-210L
PUBS SRILGIRT TZ-00-2107
UOTJBULIOJUT

pueg

- PPV D D 3v YV Y Y Y Y Y Y ﬁoa%gggvmﬁggﬁgngg
%5%@«%%«%«%@%}%%&%«%%@ / £
P Y Y v Y VY Y Y Y Y Y Y Y Y DR Y Y Y VY Y Y Y %@a&«%
PN OV O Oy v v Y Y Y VY Y VY Y Y Y Y Y MR YV Y YV VY DAYV VY VY Y VY Y VY VY
bbb el bt b ibad s ditd i b irbi b i b vt vt bl bbbt b bbb oa b dvid b d
Y Y Y Y Y P Y W Y Y Y W W W Y Y VY Y WY Y W W OV VOV
P Y WY Y Y Y Y Y Y Y Y Y Y Y YO Y Y Y Y YV VYY Y
P Y Y Y Y Y Y O Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y v Y Y Y Y oY Y WY R YR Y Y Y Y VY Y

- VY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y W Y W W WY VYV VYRRV Y YV YV Y < DUOW = BDOW
oI AD03, =003 00, =By 987, =uipim slinwuy

< f Al =uliye ey

< Sl -s0do /0071 TOF /SRuuoyos Aoy sad- Uosdo maa f /1 d iy, = supx suiad-sods s

ATPEY WA-5048

US 9,098,226 B2

Sheet 84 of 85

Aug. 4, 2015

U.S. Patent

814

*paiB|dwos uasq sey ssesosd Hodw dyy

ucieniIojuy

YWY WYYV VYV VYV VYWV YVY VYV <, OU0i, =3pot
«1740j03,=10j03 09, =363y 962, =4ipim abeus>

</, 483420, =ubje xay>

< JuLd-sods/Co/1 10T /seuayds /U0 sod

,.. -uosda-mmm// diy, =sujwx jud-soda>

(X Wud-5049) Jodia 3g 03 vieq

apo3 Jeg

L2300

ebeuiz
sy Ay Wen g

B

pod4 Jndeg

5 ™Eeeg Bzig

i 4

Jutd Buz

US 9,098,226 B2

Sheet 85 of 85

Aug. 4, 2015

U.S. Patent

HdBuLsoy mpnq puds sude

£ uadossannJueie T () sogouny = usdoisaooun sods
O H{smeiruenusie b (s uohpuny = s0usucrsods

{ H{ssanonssaiipize) {$51) UOIIBUN = SAIDRIIUG SIS
H{ssaippeiuLES Ogs uosds rau = sods Jea

LUy 000 TV INTURICEH, KB L pPe 5apiing

DL JuoIEsOgIXS LPPe 1BPHNg

(T NNV Epngubivaxe L ppe1eping

‘(Ipsadppe Bpiing

{IBYeN (RIBUIN, 1IXB L BpR RpING

{ uyabuelQ axa ppe iBpng

H{z)youripondppe sBpHng

U HNOA Ry £, 13X8) ppe sspying

s jBueyxe | ppeiaping

H{ONOW3Q0W Bpting

TTROIOD epiiyg s seaurd @pmaseaued g g e xesuniai - seaue)airupprrasping
TNOISNIAI0 40T T INQLATYH BDING = aucljiey aping
01 = ssaugiigieping
{HAINIOTNOTIY oI JublvIXa 1 ppRIOPHNg
H{LepngSOde uoss Mot = JBPING JRA

{00000 =3N0RUIPRIRGULE T [RI0) = HADD 16 0nauns fsodo /uig-183/00T 1T 8QT Z6T /101y, = S521ppe 4ga
4 seauel IPIAGIUSWBITRE JUSWINI0PR = SRALIED JBA

Bumes Wg HAX

HORPT Ritdg-S08

US 9,098,226 B2

1
EPOS PRINTING OVER A NETWORK

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims the benefit under 35 U.S.C. 119(e)
of Provisional Patent Application No. 61/683,009, filed Aug.
14, 2012, which is hereby incorporated by reference in its
entirety.

BACKGROUND

1. Field of Invention

The present invention relates to printing over a TCP/IP
network. More specifically, it relates to printing in a point-of-
sale (POS) network.

2. Description of Related Art

Network printing refers to the sharing of printing resources
on a computer network. An early application of network
printing is the print server, or printer server, as illustrated in
FIG. 1. A printer server 11 is a device that connects a client
computer 13a with a printer 15a on a common computer
network 17. That is, client computer 13a sends a print job to
printer server 11; printer server 11 receives and holds (i.e.,
spools) the print job; and when printer 15a becomes available,
printer server 11 sends the held print job to printer 15a for
printing. It is to be understood that printer sever 11 may
manage multiple print jobs from multiple client computers
13a through 137 among multiple printers 15a through 15i,
and that the computer network may including both wired and
wireless communication links. Individual printers 15a
through 15: may be local printers and/or network printers, and
may be connected directly to print server 11 via a direct cable
connection (such as a by a parallel cable, USB cable, propri-
etary cable, etc.) or by a wired network connection (IEEE
802.11 on standardized network category cable (i.e., CAT 5,
Se, 6), etc.) or by a wireless network connection (IEEE
802.11a/b/g/n, etc.) or by another known wireless communi-
cation link (Bluetooth, HomeRF, HyperLan, etc.)

Printer server 11 is responsible for queuing (i.e., spooling)
print jobs while it waits for a target printer to become avail-
able. It may also be responsible for re-ordering or deleting
print jobs in its queue, keeping track of printer activity (such
as the number of pages printed, the time of printing, etc.). As
aresult, printer server 11 generally supports multiple industry
standards and/or proprietary printing protocols, and thus may
also include printer drivers for each printer under its manage-
ment. Although printer servers are well suited for private
networks, as the industry has moved toward using the prolific
internet protocol TCP/IP for both public and private net-
works, it has become desirable to incorporate printing capa-
bilities in public networks through internet interfaces.

The “web browser” is a popular internet interface (com-
monly used on the Worldwide Web, i.e., WWW or Internet),
which displays “web pages” based on the HyperText Markup
Language (HTML). A markup language is a text-based lan-
guage system that uses “tags” to provide machine-executable
instructions in a textual format that is legible by a human
reader. For example, tags may instruct the web browser about
how to format information for display on a web page (i.e.,
how to display the web page information on a display screen),
or to specify a desired executable function.

As the Internet grew, it became desirable to provide more
functionality than was available on early versions of HTML.
To address this need, the Java language was adapted to pro-
vide fully contained machine code that could be embedded
within an HTML web page. These small applications became

10

15

20

25

30

35

40

45

50

55

60

65

2

known as applets. Java is a full-feature, object oriented pro-
gramming (i.e., OOP) language used in many applications,
such as in control applications for small devices and appli-
ances.

Companies that created Java applications to control their
devices wanted to ease adoption of their devices by third-
party manufactures without releasing proprietary informa-
tion regarding the control programs of their devices. This was
achieved by the use of application program interface (API)
libraries that provided simplified interfaces to their control
applications, and thereby simplified the adoption of their
control programs by third-party manufacturers. Basically, an
APl is a set of common code pieces with specified input and
output requirements, such as are found in objects or classes in
OOP languages, and which provide an interface to a coded
application. In this manner, a user does not need to re-code a
specific software tool or even to know how the software tool
is coded. The user merely needs to know how to invoke the
software tool, pass it any specified parameters, let it execute
the desired function, and receive any specified output.
Although Java made web pages more dynamic, Java applica-
tions (and applets) are compiled programs that are provided in
machine code, not script, and are therefore not readily legible
by a human user. Thus, the use of applets reduced the read-
ability of HTML code.

JavaScript, which provides some of the dynamic capabili-
ties of Java in a script-language form, addresses this issue.
Since JavaScript is a script language, HTML can execute
JavaScript code without the JavaScript code being pre-pro-
cessed (i.e., compiled), and thus it remains in a script (i.e.,
textual) form. Like Java applets, JavaScript may be embedded
within an HTML web page, and the web browser will execute
it when the HTML web page is downloaded or in response to
a triggering event. JavaScript permits a web page to dynami-
cally modify its content or add content to a current web page
or send content from that web page. JavaScript, and other
script languages, permit web pages to become more interac-
tive by providing a bridge between the web browser and the
operating system on which the web browser is running. This
permits aweb page to incorporate information from the user’s
local device environment, such the device’s location and
other user information that the web browser and/or operating
system deem safe to provide to the web page.

With the adoption of JavaScript, software developers
began providing complete script applications designed to
execute specific tasks. When these script applications are
packaged as a unit for insertion into a web page, they are
sometimes termed “widgets”. Since each widget is as a com-
plete script code, it may have a set of expected inputs and a list
of possible outputs, in a manner similar to how inputs and
outputs are used in Java applets. As a result, APIs have also
been developed for script codes. For example, a company
may produce a library of script codes to operate with a spe-
cific device and provide a list of API’s that facilitate the
integration of their script codes into a third party developer’s
code. Thus, the third party developer does not need to under-
stand how the company’s device works or know how to pro-
gram it; the third party developer can quickly insert control of
the company’s device by using their provided API’s and/or
widgets (i.e., script codes).

This leads to the topic of printing from a web browser, i.e.,
HTML printing. Most web browsers provide a print function
on their toolbar (i.e., a visual list of selectable “software-
buttons” for invoking different tasks), and when a user selects
this print function, the web browser accesses the local
device’s printer through the print APIs of the local device’s
operating system. That is, the web browser does not know

US 9,098,226 B2

3

what type of printing capabilities are available to the device
on which it is running, if any, and the operating system does
not share this information with the web browser for security
reasons. Thus, in order for the web browser to print, it must
pass this function request to the operating system, which it
may do by calling up the operating system’s print interface.

Consequently, printing from a webpage requires going
through a printer dialogue box, as is illustrated in FIG. 2. The
printer dialogue box 19 provides printer information and
provides options for a user to select from to format the printed
document. These options are determined from the printer’s
capabilities, which are in turn provided by the printer driver.
For example, printer dialogue box 19 may provide a printer-
select option 21 to select among multiple available printers.
Boxes 21a through 21¢ may provide information about the
selected printer, such as its status, type and location, respec-
tively. Other options may include a choice of printing in
black-and-white or color, as indicated by selection button 23.
A user may also enter a range of pages to be printed, and/or
select a paper type or paper orientation, as indicated by selec-
tion buttons 25 and 27.

Some web browsers may provide a quick-print option
wherein a currently displayed web page is sent for printing
without the use of a printer dialogue box by instead sending
the printing request to a default printer and accepting all the
printer’s default settings. This request is sent to the local
operating system’s print AP, and if it supports quick printing
and it has default print and its default settings assigned, then
it will accept the webpage for printing. Unfortunately, the
entire web page is sent for printing. Thus, web page develop-
ers have no control over how, or what part of, a web page is
printed, or what material, in general, is printed. The web page
developers also do not know what printers are available or
their print-capabilities, nor do the web developers know what
the individual printer’s default settings might be. To summa-
rize, the web browser goes through the local device’s operat-
ing system (OS), and assumes that on the local OS will access
the appropriate printer driver.

The XML printer has been developed to reduce the reli-
ability on printer drivers, and to have more control over the
formatting of printed documents. The XML printer is not
limited to web pages, and can serve as a local virtual printer.
That is, it responds to a print request as if it were a physical
printer, but instead of producing a physical printed document,
it produces a script-language description of how the printed
document should look. This is similar to how the HTML
script language is used to define the look and format of a web
page on adisplay screen. This script-language description can
then be sent to a physical printer that supports XML printing
to produce a physical print-out. XML printers are typically
used to maintain consistency of printing across different plat-
forms and document formats. For example, an XML print
document file would assure that a document prepared in
Microsoft Word™ would print the same as the same docu-
ment prepared in Adobe Acrobat™.

Thus, if one has an XML print document file and a printer
(or printer driver) capable of reading XML print document
files, one may send the XML print document file to the printer
without need of printer driver requirements. The printer (or its
printer driver) would read the scripted description of how the
document should look, and generate its own print image for
printing. Although the XML printer reduces the reliance on
printer drivers, and thus facilitates printing on a network, it
does not provide any additional printing control to the web
page developer. That is, the web page developer still cannot

10

15

20

25

30

35

40

45

50

55

60

65

4

control printing from within a script application, or widget,
but instead relies on the web browser as a print interface.

JavaScript does not provide any assistance in this matter.
Although the web browser may interface with the local oper-
ating system to access the local printer’s API or call upon an
XML printer to create an XML print document, for security
reasons the web browser does not share this information with
its Java scripts. That is, the job of the JavaScript is tradition-
ally to define information on a web page and to provide
dynamic functionality; it is not the Java script’s job to print
documents. It is the web browser’s job to control the print
function, and thus it does not share this control with internal
script applications. As a result, heretofore a JavaScript appli-
cation cannot directly control a printer. It must instead request
that the web browser make a print request, which in turn
relays the request to the local OS, which then calls up the print
dialogue box to setup a local/network printer (real or virtual).

In spite of these difficulties, strides have been made toward
providing web-printing, i.e., printing over the Internet. For
example, the Internet Printing Protocol (IPP) provides a stan-
dard network protocol for remote printing over the internet,
which removes the need for individual print drivers on each
user’s machine. IPP provides control over various printing
needs, such as managing print jobs, media size, resolution,
etc, and is intended to provide users with similar methods and
operations as if the printer were local. Basically, IPP is a
collection of open standards that define a network printing
protocol, and if a printer vendor has adopted this standard,
then IPP allows a user to interact with that vendor’s printer in
real-time in order to find out about the printer’s capabilities,
inquire about the status of a print job or cancel a print job that
has been submitted. As in the case of a local printer, this
dialogue would be through a printer dialogue box.

Another approach toward providing internet printing is
known as Google Cloud Printing™, or GCP. This is a service
provided by Google™ Corp., and it basically permits devel-
opers to incorporate printing capabilities into their web pages
and services by sending print requests to Google Corp, letting
Google Corp. prepare print jobs (limited to PDF print jobs)
and forward them to a user’s pre-registered printer. Google™
Corp. provides an API to permit developers to quickly insert
the required code, and it uses a standard printing dialogue box
to create and submit PDF print jobs. As it would be under-
stood, this means that Google has access to all documents to
be printed, which raises questions of security and privacy for
users. It is further note that another limitation of this service
is that it requires that the document-to-be-printed already be
on the web, and not just on the user’s computer. Thus, the
service cannot be used to print locally generated documents
that are not on the web.

What is needed is a way to increase a user’s control over
printing from within a web browser.

It is further preferred that developer have direct access to,
and control over, a printer directly through a script applica-
tion, such as a JavaScript widget, without having to send a
print request to a local web browser.

It also desired that a script application within web page be
able to directly generate and format the information to be
printed, and to send the information directly to a printer
without necessitating a print dialogue box, or being limited by
the content within the web page.

It is further desired that a user have direct web printing
capabilities without depending upon any third party entity to
manage print jobs.

SUMMARY OF INVENTION

The above objects are met in a method for creating a
document in a web application, and sending the document to

US 9,098,226 B2

5

a printer through network, the web application executed by a
web browser, the method comprising steps of: providing an
intelligent module adapted to connect to the printer, the intel-
ligent module configured to be set an address, to receive the
document, and to send the document to the printer; embed-
ding an application program interface (API) in the web appli-
cation, the API providing an address property element con-
figured to designate the address of the intelligent module, a
first method element configured to add commands for con-
trolling the printer into a command buffer and creating the
document by accumulating the commands in the command
buffer, and a second method element configured to send the
document to the intelligent module; creating the document by
means of the first method element embedded in the web
application; sending the document, by means of the second
method element embedded in the web application, to the
intelligent module having the address designated by the
address property element; and sending the document from the
intelligent module to the printer.

Preferably, the web application is placed in the intelligent
module or a web server, and the intelligent module is an
electronic device.

The method may further comprise a step of printing the
document on a paper in the printer. One of the commands may
be a text command for adding text for printing to the com-
mand buffer. Additionally, one of the commands may be a text
setting command for adding a parameter for setting a property
of'the text, to the command buffer. The text setting command
may include a first text setting parameter specifying at least
one of a start position, an alignment, a language, a font, a
style, a scale, or a size of the text. The text command may also
include a second text setting parameter specifying whether to
rotate the text, or whether to enable smoothing the text.

One of the commands may also be a paper feed command
for adding an instruction of feeding the paper in the printer, to
the command buffer.

Additionally, one of the commands may be an image com-
mand for adding a raster image for printing, to the command
buffer.

Preferably, the API includes a half tone property element,
and the image command converts a color image rendered in
the web application into the raster image data for printing
according to a setting of the halftone property element. The
halftone property element may specify either one of a dither-
ing, an error diffusion, and a threshold for converting the
color image into the raster image data.

Further preferably, the API includes a brightness property
element, and the image command converts the color image
into the raster image data for printing according to a setting of
the brightness property element. The brightness property ele-
ment may, for example, specify a gamma value in the range
0.1-10 for correcting the brightness of the raster image data.

In a preferred embodiment, the printer includes a non-
volatile, i.e., NV, memory for registering a logo identifiable
by key code, and wherein the command includes a logo com-
mand for adding a key code to the command buffer for print-
ing the logo, the added key code specifying (i.e., identifying)
the logo registered in the NV memory.

One of the commands may also be a barcode command for
adding an instruction of printing a barcode, to the command
buffer, said barcode command including a barcode parameter,
the barcode parameter specifying at least one of a type of the
barcode, width and height of the barcode, and/or data to be
converted to the barcode.

Additionally, one of the commands may also a symbol
command for adding an instruction of printing a two-dimen-
sional symbol, to the command buffer, said symbol command

10

15

20

25

30

35

40

45

50

55

60

65

6

including a symbol parameter, the symbol parameter speci-
fying at least one of a type of the two-dimensional symbol, an
error correction level of the two-dimensional symbol, or data
to be converted to the two-dimensional symbol.

The commands may also include a first line command for
adding to the command bufter an instruction of drawing a first
line in a first direction and a second line command for adding
to the command buffer an instruction of drawing a second line
in a second direction, the first line command including a first
line parameter specifying a start position and an end position
of the first line to define it as a line segment, and the second
line command including a second line parameter specifying a
start position of the second line and excluding any end posi-
tion of the second line to define it as a continuous line.
Preferably, another of the commands is a third line command
for adding an instruction of finishing drawing the second line,
which is started by the second line command, the third line
command including a third line parameter, the third line
parameter specifying an end position of the second line.

Further preferably, one of the commands is a page mode
command for adding an instruction of switching to a page
mode to the command buffer, said page mode being a print
mode wherein a print area is defined, data is laid out in the
print area, and the print area is printed in a batch operation,
said page mode command further adding instructions for
adding the print area to the command buffer including a
coordinate specifying the print area. Preferably, one of the
commands is a second page mode command for adding an
instruction of ending the page mode to the command buffer.
The commands may further include a third page command for
adding a setting for the page mode, to the command buffer,
the third page command including a third page parameter
specifying a direction for the printing in the page mode, or a
coordinate specifying a start position for the printing in the
page mode. The commands may further include a forth page
command for adding an instruction of drawing a line or a
rectangle in the page mode, to the command buffer, the forth
page command including coordinates specifying a start posi-
tion and an end position of the line or the rectangle in the page
mode. The forth page command may include a forth page
parameter specifying a type of the line or of the rectangle.

Additionally, one of the commands may be a paper cut
command for adding an instruction of cutting the paper, to the
command buffer, said paper cut command including a paper
cut parameter specifying either to cut the paper without feed-
ing the paper or to cut the paper after feeding the paper.

Further preferably, a drawer connects to the printer, and
one of the commands is a drawer kick command for adding an
instruction of kicking the drawer open, to the command
buffer. The drawer kick command preferably includes a first
drawer parameter specifying an ON time duration of a signal
that is applied to open the drawer. Preferably, the drawer is
connected to the printer by two connectors, and the drawer
kick command includes a second drawer parameter specify-
ing either one of the connectors connecting the drawer and the
printer.

Additionally, the printer may have a buzzer and one of the
commands may be a buzzer command for adding an instruc-
tion of turning on the buzzer to the command buffer. The
buzzer command may include a buzzer parameter specifying
a pattern or a number of times that actuation of the buzzer is
repeated.

The address property element may be configured to set a
timeout period, and the method may preferably include a step
of cancelling a print job for printing the document in the
printer designated by the address property element in
response to the elapse of the timeout period.

US 9,098,226 B2

7

The address property element may further be configured to
set a device identification of the printer for sending the docu-
ment to the printer. The API may further include a receive
event element configured to obtain a response message
including one of a print result, an error code and/or a printer
status from the printer, the may method further include a step
of receiving the response message from the printer that is
connected to the intelligent module designated by the address
property element. Preferably, the error code and/or the printer
status indicates the occurrence of one of an automatically
recoverable error and/or an unrecoverable error. Further pref-
erably, the printer has a cover, and the error code and/or the
printer status indicates when the cover is open. Also prefer-
ably, the printer has an auto cutter, and the error code and/or
the printer status indicates when an error occurred in the auto
cutter. The printer may also have a sensor detecting if paper is
in the printer, and the error code and/or the printer status
indicates when no paper is detected by the sensor. The error
code and/or the printer status may also indicate if the docu-
ment sent to the intelligent module contains a syntax error.

Preferably the error code and/or the printer status indicate
if the printer with the device identification does not exist. If
the printer has a communication port connected to the intel-
ligent module, the error code and/or the printer status may
indicate that if an error was detected on the communication
port. Further preferably, the address property element is con-
figured to set a timeout period for cancelling a print job for
printing the document in the printer, and the error code and/or
the printer status indicates if the timeout period elapses. The
error code and/or the printer status may further indicate if
printing is successfully completed. Assuming that the printer
is adapted to connect to a drawer by a connector, the error
code or the printer status may indicate the status of a prede-
termined pin of the connector. The error code or the printer
status may also indicate if the printer is offline or waiting to be
brought back online, or if no response was received from the
printer. The printer may also have a switch for feeding paper.
In this case, the error code and/or the printer status may
indicate if the paper is being fed by operation of the switch.
The printer may also have a buzzer, in which case the error
code and/or the printer status may indicate if the buzzer is
turned on. The printer or the intelligent module may have a
spooler configured to spool a print job for printing the docu-
ment, and the error code or the printer status may indicate if
the spooler has stopped.

Preferably the API includes a constructor for initializing
the API. In this case, the method may further include a step of
initializing the API before the step of creating the document.

The objects may also be met in a method for creating a
document in a web application, and sending the document to
a printer through network, the web application executed by a
web browser, the method comprising steps of: providing an
intelligent module adapted to connect to the printer, the intel-
ligent module configured to be set an address, to receive the
document, and to send the document to the printer; embed-
ding an application program interface (API) in the web appli-
cation, the API providing a first object for creating the docu-
ment, the object including a command buffer, a first method
element for processing the first object element, the first
method element configured to add commands of controlling
the printer, into the command buffer, and creating the docu-
ment by accumulating the commands in the buffer, a second
object for sending the document, an address property element
configured to designate the address of the intelligent module,
and a second method element for processing the second
object, the second method element configured to send the
document in the buffer to the intelligent module; creating the

20

25

40

45

55

8

document by the first method element embedded in the web
application; sending the document by the second method
element embedded in the web application, to the intelligent
module having the address designated by the address prop-
erty element; and sending the document from the intelligent
module to the printer.

Preferably in this approach, the API includes a first con-
structor for initializing the first object, and a second construc-
tor for initializing the second object, the method further com-
prising steps of: initializing the first object before the step of
creating the document; and initializing the second object
before the step of sending the document.

This method may further comprise a step of printing the
document on a paper in the printer.

The API may also include a receive event element config-
ured to obtain a response message including one of a print
result, an error code or a printer status, from the printer, and
the method may further comprise a step of: receiving the
response message from the printer, which is connected to the
intelligent module designated by the address property ele-
ment, the second object being initialized before the step of
receiving the response message.

The objects may also be met in a method for creating a
document in a web application, and sending the document to
a printer through a network, the web application executed by
a web browser, the method comprising steps of: providing a
printer configured to be set an address; embedding an appli-
cation program interface (API) in the web application, the
API providing: (i) an address property element configured to
designate the address of the printer, (ii) a first method element
configured to add commands for controlling the printer, into
a command buffer, and creating the document by accumulat-
ing the commands in the buffer, and (iii) a second method
element configured to send the document in the buffer to the
intelligent module; creating the document by the first method
element embedded in the web application; sending the docu-
ment by the second method element embedded in the web
application, to the printer having the address designated by
the address property element; and printing the document.

The objects may also be met in a system for creating a
document in a web application, and sending the document to
a printer through network, the web application executed by a
web browser, the system comprising: an intelligent module
adapted to connect to the printer, the intelligent module con-
figured to be set an address; a web server connected to the
intelligent module through the network, the web application
installed in the web server; an application program interface
(API) embedded in the web application; the API including; (i)
an address property element configured to designate the
address of the intelligent module, (ii) a first method element
configured to add commands, for controlling the printer, into
a command buffer and creating the document by accumulat-
ing the commands in the buffer, and (iii) a second method
element configured to send the document in the buffer to the
intelligent module; wherein the document is created by the
first method element and is sent by the second method ele-
ment, to the intelligent module having the address designated
by the address property element, and the intelligent module
sends the document to the printer.

Preferably, a drawer is connected to the printer, and one of
the commands is a drawer kick command for adding an
instruction of kicking the drawer open, to the command
buffer.

The printer may also have a buzzer, and one of the com-
mands may be a buzzer command for adding an instruction of
turning on of the buzzer to the command buffer.

US 9,098,226 B2

9

The above objects are also met in a method for sending an
image rendered in HTMLS Canvas, to a printer, and printing
the image by the printer, the method comprising steps of:
providing an intelligent module adapted to connect to the
printer, the intelligent module configured to be set an address;
embedding an application program interface (API) in a web
application, the API providing: (i) a first property element
configured to designate a conversion method for converting
the rendered image into the raster image data, (ii) a second
property element configured to designate the address of the
intelligent module, and (iii) a method element configured to
convert the image into the raster image data and send the
converted raster image data to the intelligent module; con-
verting the image into the raster image data by the method
element, according to the conversion method designated by
the first property element; sending the raster image data to the
intelligent module by the method element, according to the
address designated by the second property element; and send-
ing the raster image data from the intelligent module to the
printer.

The above objects may also be met in a method for creating
or editing a document in an application, the document
adapted to be sent to a printer through a network, the appli-
cation adapted to be executed by a web browser, the method
comprising steps of: providing commands of controlling the
printer adapted to be added into a command buffer, and the
document being created by accumulating the commands in
the command buffer; displaying a setting screen enabled to
set an address of the printer to an address property element;
displaying an edit screen enabled to edit and/or create the
document, the edit screen including icons, each of the icons
corresponding to one of the commands of controlling the
printer; displaying an input box enabled to input a parameter
of the command on the edit screen, if a specified one of the
icons, which corresponds to the command, is selected on the
edit screen; adding to the command with the parameter, which
is selected or input in the edit screen, to the command buffer.

Preferably, this method further includes a step of convert-
ing the document edited or created on the edit screen to XML
language code, and displaying the code. The method may
further include a step of converting a first portion of the
document edited or created on the edit screen to a print pre-
view, and displaying the print preview. Optionally, the
method may also include a step of displaying a button for
sending the document to the printer having the address des-
ignated by the address property element.

The above objects may further be met in a method for
creating a document in a web application, sending the docu-
ment to a printer, and obtaining a status of the printer through
a network, the web application executed by a web browser,
the method comprising steps of: providing an intelligent
module (the intelligent module preferably being a physical
electronic device) adapted to connect to the printer, the intel-
ligent module configured to be set an address, to receive the
document, and to send the document to the printer; embed-
ding an application program interface (API) in the web appli-
cation, the API including: (i) an address property element
configured to designate the address of the intelligent module,
(ii) a status event element configured to check one or more
statuses of the printer, and (iii) an open method element
configured to enable to operate the status event element;
setting the address of the intelligent module to the address
property element; and enabling to operate the status event
element so as to receive a specified status of the printer.

10

15

20

25

30

35

40

45

50

55

60

65

10

Preferably the API includes a close method element con-
figured to disable operation of the status event element, the
method further comprising a step of disabling the status event
element.

The API may also include an interval property element
specifying a time interval for upgrading the status of the
printer, the method further comprising a step of setting the
time interval in the interval property element.

The API may further include a status property element
specifying the status last obtained from the printer.

Additionally, the method may further include a step of
setting a device identification of the printer, wherein the
address property element is configured to designate the
device identification of the printer for receiving the status of
the printer specified by the device identification.

Optionally, the web application may be placed in the intel-
ligent module or a web server.

The status of the printer may include a status indicating
whether the printer is online or offline.

Additionally, the printer may have a cover, and the status of
the printer may include a status indicating whether the cover
is open or closed.

Preferably, the API further provides: (i) a first method
element configured to add commands of controlling the
printer, into a command buffer, and creating the document by
accumulating the commands in the buffer, and (ii) a second
method element configured to send the document in the buffer
to the intelligent module. In this case, the method may further
include the steps of: creating the document by the first method
element embedded in the web application; sending the docu-
ment by the second method element embedded in the web
application, to the intelligent module having the address des-
ignated by the address property element; and sending the
document from the intelligent module to the printer.

The method may also include a step of printing the docu-
ment on a paper in the printer. In this case, the status of the
printer may include a status indicating whether the paper
supply in the printer is ended or nearly ended. Preferably, a
drawer is connected to the printer, and one of the commands
is a drawer kick command for adding an instruction ofkicking
the drawer open, to the command buffer. The status of the
printer may include a status indicating whether the drawer is
open or closed.

The above objects may also be met in a system for creating
a document in a web application, sending the document to a
printer, and obtaining a status of the printer through a net-
work, the web application executed by a web browser, the
system comprising of: an intelligent module adapted to con-
nect to the printer, the intelligent module configured to be set
an address; a web server connected to the intelligent module
through a network, the web application installed in the web
server; an application program interface (API) embedded in
the web application, the API including: (i) an address prop-
erty element configured to designate the address of the intel-
ligent module, (ii) a status event element configured to check
one or more statuses of the printer, and (iii) an open method
element configured to enable operation of the status event
element; wherein the status of the printer, designated by the
status event element, is sent from the printer designated by the
address property element, to the web browser, after the open
method element enables operation of the status event ele-
ment.

Preferably, the printer has a cover, and the status of the
printer includes a status indicating whether the cover is open
or closed.

Further preferably, the API further provides a first method
element configured to add commands of controlling the

US 9,098,226 B2

11

printer into a command buffer, and creating the document by
accumulating the commands in the buffer, and a second
method element configured to send the document in the com-
mand buffer to the intelligent module, wherein the document
is created by the first method element and is sent by the
second method element, to the intelligent module having the
address designated by the address.

Preferably, a drawer is connected to the printer, and one of
the commands is a drawer kick command for adding an
instruction of kicking the drawer open, to the command
buffer.

The status of the printer may further include a status indi-
cating whether the drawer is open or closed.

Other objects and attainments together with a fuller under-
standing of the invention will become apparent and appreci-
ated by referring to the following description and claims
taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Inthe drawings wherein like reference symbols refer to like
parts.

FIG. 1 illustrates a typical printer server arrangement.

FIG. 2 illustrates a typical printer dialogue box.

FIG. 3 is a first embodiment in accord with the present
invention.

FIG. 4 is a second embodiment in accord with the present
invention.

FIG. 5 shows a command buffer and illustrates some
examples of control commands in accord with present inven-
tion.

FIG. 6 illustrates a specific example of the present inven-
tion as applied in a POS system.

FIG. 7 shows examples of the type of printing that may be
implemented by means of ePOS-Print API.

FIG. 8 shows examples of the type of printing that may be
implemented by means of the ePOS-Print-Canvas API

FIG. 9 is an example of print flow in accord with an
embodiment of the present invention.

FIG. 10 shows a system construction example in accord
with the present invention.

FIG. 11 shows the registering of a web application into a
TM intelligent printer.

FIG. 12 provides an example of a sample program screen
created using the ePOS-Print API in accord with the present
invention.

FIG. 13 is an example of a settings window that may be
called up in response to actuation of the settings button of
FIG. 12.

FIG. 14 shows a first sample print-out using the ePOS-Print
API and a second sample print-out using the ePOS-Print-
Canvas API.

FIG. 15 shows a sample flow chart illustrating a process
step flow from its initial display state up to print job comple-
tion.

FIG. 16 shows a sample flow chart illustrating a process
step flow for coupon issuance.

FIG. 17 is an example of an operating environment in
accord with the present invention.

FIG. 18 shows a process flow for configuring the environ-
ment settings for a sample program.

FIG. 19 is an example of Network Settings for the TM
Intelligent Printer.

FIG. 20 is an example of device settings.

FIG. 21 shows examples of devices settings that may be
configured.

20

25

30

40

45

50

60

65

12

FIG. 22 show a sample work flow for programming using
the ePOS-Print API.

FIG. 23 shows an example of using the HTML <script>tag
to embed an ePOS-Print API.

FIG. 24 shows an example a program code segment for
creating a print document.

FIG. 25 illustrates an example of script code for creating a
text print document.

FIG. 26 provides sample script code creating a graphic
print document.

FIG. 27 illustrates sample code for creating a page mode
print document.

FIG. 28 provides sample code for transmission of a print
document.

FIG. 29 provides a table with details about the printer end
point address.

FIG. 30 provides sample code for implementing a callback
function.

FIG. 31 provides an example of an error handling method
for a callback function.

FIG. 32 illustrates the use of the status event notification
function to check the printer status without printing.

FIG. 33 illustrates a workflow for programming using
ePOS-Print-Canvas APL.

FIG. 34 shows sample code for embedding an ePOS-Print-
Canvas API.

FIG. 35 provides sample code for rendering in HTMLS5-
Canvas.

FIG. 36 provides sample code for transmitting a print docu-
ment for printing.

FIG. 37 shows sample code for printing a result receipt and
callback function.

FIG. 38 provides sample code for error handling by a
callback function.

FIG. 39 provides sample code for using the status event
notification function to check the printer status without print-
ing.

FIGS. 40, 41, 42a and 425 list some of the methods and
components of the ePOS-Print API.

FIG. 43 provides sample code for the constructor of an
ePOS-Print Builder object.

FIG. 44 provides examples of types of alignment param-
eters.

FIG. 45 provides the return value for the ePOS-Print
Builder object.

FIG. 46 illustrates exception error.

FIG. 47 provides sample code illustrating the use of text
alignment.

FIG. 48 provides sample code to set the line feed space to
30 dots.

FIG. 49 illustrates Boolean values for the rotate parameter.

FIG. 50 provides sample code to set text rotation.

FIG. 51 shows escape sequences to indicate nonprintable
characters in a character string.

FIG. 52 provides sample code illustrating the use of
addText(data).

FIG. 53 provides examples of parameter “lang” to desig-
nate a target language.

FIG. 54 provides sample code illustrating the use of
method addTextLang(lang).

FIG. 55 illustrates sample values for the font parameter.

FIG. 56 provides sample code illustrating the use of the
addTextFont(font) method.

FIG. 57 illustrates possible values for parameter “smooth”.

FIG. 58 provides sample code illustrating the use of
method addTextSmooth(smooth).

FIG. 59 describes parameter values for dw.

US 9,098,226 B2

13

FIG. 60 describes parameter values for dh.

FIG. 61 provides sample code to set the text size to double
width and double height.

FIG. 62 illustrates possible values for parameter “width”.

FIG. 63 illustrates possible values for parameter “height”.

FIG. 64 shows sample code to set a horizontal scale of x4
and a vertical scale of x4.

FIG. 65 shows possible values for parameter “reverse”.

FIG. 66 shows possible values for parameter “ul”.

FIG. 67 shows possible values for parameter “em”.

FIG. 68 shows possible values for parameter “color”.

FIG. 69 provides sample code to set the underline style.

FIG. 70 shows sample code to set the print position at 120
dots from the left end.

FIG. 71 shows sample code to feed paper by 30 dots.

FIG. 72 shows sample code to feed paper by 3 lines.

FIG. 73 shows sample code to start a new line after printing
a character string.

FIG. 74 shows sample values for parameter “color” within
the addImage method.

FIG. 75 shows sample values for parameter “mode” within
the addImage method.

FIG. 76 provides sample code to print an image 300 dots
wide and 300 dots high in page mode.

FIG. 77 shows sample code illustrating the use of the
addLogo method.

FIGS. 78 to 81 provide examples of barcode types.

FIG. 82 illustrates some possible values for the hri param-
eter.

FIG. 83 provides sample code illustrating how to print
barcodes.

FIGS. 84 and 85 provide examples of 2D-Code type
descriptions for parameter “data” within the addSymbol
method.

FIG. 86 provides sample values for parameter “type”
within the addSymbol method.

FIG. 87 provides sample values for parameter “level”
within the addSymbol method.

FIG. 88 provides sample code to print two-dimensional
symbols.

FIG. 89 illustrates some style parameters for the addHline
method.

FIG. 90 shows sample code to draw double horizontal
lines.

FIG. 91 provides examples of parameter style for the add V-
LineBegin method.

FIG. 92 provides sample code to draw thin vertical lines at
100 dots and 200 dots from the left end.

FIG. 93 provides examples of parameter style for the add V-
LineEnd method.

FIG. 94 provides sample code to draw thin vertical lines at
100 dots and 200 dots from the left end.

FIG. 95 shows sample code to print characters “ABCDE”
in page mode.

FIG. 96 shows sample code to specify the print area with
the origin (100, 50), a width of 200 dots, and a height of 30
dots and print the characters “ABCDE”.

FIG. 97 provides some examples for parameter “dir” of
method addPageDirection.

FIG. 98 provides sample code to print characters
“ABCDE” by rotating them 90 degrees clockwise.

FIG. 99 shows sample code to specify (50,30) for the print
start position in the area specified by the addPageArea
method and print the characters “ABCDE”.

FIG. 100 provides examples of the “style” parameter in
method addPagel ine.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 101 provides sample code to draw a thin solid line
between start position (100, 0) and end position (500, 0).

FIG. 102 provides examples of the “style” parameter in
method addPageRectangle.

FIG. 103 shows sample code to draw a rectangle with a thin
double line, with the start position (100, 0) and the end posi-
tion (500, 200) as its vertexes.

FIG. 104 shows sample types for method addCut.

FIG. 105 provides sample code to perform a feed cut opera-
tion.

FIG. 106 shows examples of parameter “drawer” for
method addCut.

FIG. 107 shows examples of parameter “time” for method
addCut.

FIG. 108 shows sample code to send a 100 msec pulse
signal to pin “2” of a drawer kick connector.

FIG. 109 shows examples of buzzer patterns.

FIG. 110 shows examples of how to set parameter “repeat”
in method addSound.

FIG. 111 shows sample code to repeat a sound pattern “A”
three times.

FIG. 112 shows sample code illustrating the use of method
to String().

FIG. 113 shows the specifying of the halftone processing
method to be applied to monochrome (two-tone) printing.

FIG. 114 shows sample code to set the halftone type as
error diffusion.

FIG. 115 provides sample code to set brightness as 2.2.

FIG. 116 provides sample code to clear the command
buffer and reset it to its initial state.

FIG. 117 provides sample code illustrating the use of
ePOSPring(address).

FIG. 118 provides sample code illustrating the use of the
send(request) method.

FIG. 119 provides sample code illustrating the use of the
open() method.

FIG. 120 provides sample code illustrating the use of the
close() method.

FIG. 121 provides an example of the use of the address
property.

FIG. 122 provides an example of using the enabled prop-
erty.

FIG. 123 provides an example of using the interval prop-
erty.

FIG. 124 provides an example of using the status property

FIG. 125 shows some properties of the response object.

FIG. 126 shows value of success.

FIG. 127 shows value of code.

FIG. 128 shows value of status.

FIG. 129 show sample code to create and send a print
document, and to display the print result in a message box.

FIG. 130 lists some properties of the error object.

FIG. 131 shows sample code to create and send a print
document and to display the HTTP status code in a message
box when a communication error occurs.

FIG. 132 provides an example of using the onstatuschange
property.

FIG. 133 provides an example of using the ononline prop-
erty.

FIG. 134 provides an example of using the onoffline prop-
erty.

FIG. 135 provides an example of using the onpoweroff
property.

FIG. 136 provides an example of using the foncoverok
property.

FIG. 137 provides an example of using the oncoveropen

property

US 9,098,226 B2

15

FIG. 138 provides an example of using the onpaperok
event.

FIG. 139 provides an example of using the onpapernearend
event.

FIG. 140 provides an example of using the onpaperend
event.

FIG. 141 provides an example of using the ondrawerclosed
event.

FIG. 142 provides an example of using the ondraweropen
event.

FIG. 143 provides a list of some components of the ePOS-
Print-Canvas API.

FIG. 144 is sample code illustrating the creation of a new
ePOS-Print Canvas API object.

FIG. 145 shows examples of parameter “cut”.

FIG. 146 shows examples of parameter “mode”.

FIG. 147 provides sample code to print Canvas
(ID="myCanvas’).

FIG. 148 is sample code illustrating the use of the open()
method.

FIG. 149 is sample code illustrating the use of the close()
method.

FIG. 150 is sample code illustrating the use of the address
property.

FIG. 151 is sample code illustrating the use of the enabled
property.

FIG. 152 is sample code illustrating the use of the interval
property.

FIG. 153 is sample code illustrating the use of the status
property.

FIG. 154 illustrates some halftone properties.

FIG. 155 is sample code illustrating the use of the halftone
property.

The default value is 1.0. FIG. 156 is sample code illustrat-
ing the setting of the brightness property.

FIG. 157 shows some properties of the response object.

FIG. 158 shows value of success.

FIG. 159 shows value of code.

FIG. 160 shows value of status.

FIG. 161 shows sample code to print Canvas
(ID=myCanvas), and to display the print result in a message
box.

FIG. 162 lists some properties of the error object.

FIG. 163 shows sample code to print Canvas
(ID=myCanvas), and to display the HTTP status code in a
message box when a communication error occurs.

FIG. 164 is sample code illustrating the use of onstatus-
change event.

FIG. 165 provides an example of using the ononline prop-
erty.

FIG. 166 provides an example of using the onoffline prop-
erty.

FIG. 167 provides an example of using the onpoweroff
event.

FIG. 168 provides an example of using the oncoverok event

FIG. 169 provides an example of using the oncoveropen
event.

FIG. 170 provides an example of using the onpaperok
event.

FIG. 171 provides an example of using the onpapernearend
event.

FIG. 172 provides an example of using the onpaperend
event.

FIG. 173a provides an example of using the ondrawer-
closed event.

FIG. 1735 provides an example of using the ondraweropen
event.

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 174 provides a sample main page (i.e. index.html, or
home page) for an ePOS Print editor in accord with the
present invention.

FIG. 175 shows the Setting screen resulting from selection
of'the “Setting” tab ofthe ePOS Print editor in accord with the
present invention.

FIG. 176 provides a table summarizing some of the options
provided by the Setting screen.

FIG. 177 provides another view of the Edit screen of the
ePOS Print editor in accord with the present invention.

FIG. 178 shows a sample preview image of the ePOS Print
editor in accord with the present invention.

FIG. 179 provides a sample view of the present ePOS-Print
editor with the Print tab selected.

FIG. 180 shows an import screen in accord with the present
invention.

FIG. 181 provides a sample view of the present ePOS-Print
editor with the API tab selected.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Previously, in order to print from a web page on the Inter-
net, a user typically had to go through a web browser’s print-
select button on the web browser’s interface or go through a
third-party printing service on the Internet. The web browser
controls access to local resources, such as printers. Basically,
the web browser functions as an interface to the local operat-
ing system, which in turn controls access to any installed
printer drivers. If one wishes to print through a third-party
printing service on the Internet, then the document to be
printed needs to also exist on the Internet, and not just on the
user’s local device. In either case, the user is required to go
through a printer dialogue box to select from among avail-
able, registered printers and printing options, none of which
are known to the web page from which one wishes to print.

To improve the capabilities of network printing, the present
invention endeavors to increase the capabilities of web appli-
cations, i.e., web pages, and in particular to increase the
capabilities of script applications (i.e., widgets, methods,
etc.) executed within a web page to directly control network
printers and non-network printers without having to go
through the web browser’s print-select button or relying on a
third-party Internet printing service.

The printers in the preferred embodiments may be local
printers and/or remote printers. That is, the present invention
permits web page script applications to create a print docu-
ment and communicate with, and control, a printer without
requiring explicit printing permission or printing assistance
from the web browser. In addition to the print document being
directly created by the script application, the print document
may does not need to exist on the Internet in order to be
printed. As a preferred implementation, whenever a script
application is mentioned in the following discussion, it is
discussed as implemented in the JavaScript language, which
is a Java-based script language. It is to be understood how-
ever, that the present invention may be implemented using
other script languages known in the art.

Since the present invention adds printing capabilities to a
web page, and the web page is typically accessed via a web
browser, the preferred embodiment of the present invention
includes a local computing device capable of running a web
browser. To facilitate the use of the present invention with
existing network and non-network printers, it is further pre-
ferred that the web page communicate via an interface box
(i.e., device, apparatus, or module) capable of receiving print-
ing instructions from the web page and translating them to an

US 9,098,226 B2

17

appropriate communication format/language for the con-
nected printers. Preferably, the interface box provides trans-
lation services for communication between the web page and
the printers, and further provides any needed help for creating
a print document appropriate for a given printer. Since the
interface box has computing and decision-making capabili-
ties, it is an intelligent device. So for ease of discussion, the
interface box is hereinafter termed, an “intelligent module”.

If a printer is not a non-network printer, the local printers is
connected to local computing device (on which the web
browser is installed) via the intelligent module (which is
preferably a physical computing apparatus/device). Alterna-
tively, if the printer is a network printer, it is preferred that the
intelligent module still function as a communications inter-
face with the local printer. Furthermore, in a network envi-
ronment, the intelligent module may function as a communi-
cation interface for multiple (network and non-network)
printers.

Although the present invention may be implemented in any
computing environment having a web browser and printer(s),
for ease of explanation and as an example of a preferred
embodiment, the present invention is herein described as
implemented within a retail environment. In particular, the
present invention is described as implemented in a point-of-
sale (i.e., POS) system, or POS network. It is to be understood
however, that the present invention may be implemented
other networked and non-networked computing/printing
environments.

In POS systems, a point-of-sale device is located at each
checkout station to implement a commercial transaction and
maintain a record of the transaction. The checkout station is
thus the location within a retail environment (or retail estab-
lishment) where a physical customer pays a merchant for
goods and/or services. A POS system may include multiple
POS devices, which may be thought of as electronic cash
registers that incorporate computing and/or networking capa-
bilities. POS devices typically have an adjacent (or inte-
grated) receipt printer on which a receipt (or summary of a
transaction) is printed for the customer’s records. In order to
accommodate transaction summaries of indefinite length, the
receipt printer is typically a “roll-paper printer” (i.e., a printer
that prints on a roll of paper, or “paper roll”) and cuts the
printed portion from the roll of paper at the end of the printed
transaction summary). It is to be understood, however, that
the present invention is compatible with sheet printer, and
other non-roll-paper printers.

POS devices are typically networked within a POS system
and communicate with a central server that keeps track of
transactions for bookkeeping and inventory purposes, and
may additionally provide information to the POS device, such
as product prices (or updates to produce prices), coupons,
promotional advertisements, product information (such as
product description and/or availability), and other data. The
central server may be part of a local area network and/or a
wide area network, and may optionally be distributed across
multiple servers. Conceivably, the central server may also be
accessible via the Internet.

Since POS system networks are comprised of specialized
and computerized POS devices, they can be complicated and
costly to purchase, set-up, maintain, and upgrade. The cost
and difficulty of implementing and maintaining POS systems
is further increased by the use of different model POS devices
(from different manufactures) and different model printers
(from different manufactures) within the same POS system
network. As it would be understood, the different POS
devices may have different operating platforms (i.e., run on
different operating systems, OS) with different capabilities,

30

40

45

18

and the different model printers may have different driver
requirements/capabilities for the different operating plat-
forms.

The following discussion illustrates how the present inven-
tion may reduce the cost and complexity of setting up, main-
taining, and upgrading a POS system network; particularly
one that combines different model POS devices and different
model printers.

In a preferred embodiment, a POS system is implemented
over a network, and commercial transactions are managed via
aweb page application (i.e., a web page) maintained within a
network server and accessible by remote web terminals func-
tioning as POS devices to implement and record sales trans-
actions. Alternatively, the web page may be maintained in the
intelligent module, and the POS devices may access the web
page from the intelligent module. In either case, each POS
device accesses the web page via a web browser, and uses the
web page to print to a printer. Preferably, commercial trans-
actions are also entered and recorded via the web page.

A printer, which is typically adjacent to a POS device, may
be controlled by the network server or controlled by the POS
device. In both cases, it is preferred that communication with
the printer be conducted via the intelligent module, as is
explained more fully below.

Alternatively, the present invention may also be imple-
mented without the use of any network server. In this case, the
intelligent module may provide the web page to the POS
device(s), and convey communication between the POS
device(s) and the printer(s). This implementation does not
preclude the POS device from being part of a computer net-
work.

In this manner, the operating platform of the POS device is
not a limiting factor; all that is needed is that the POS device
be capable of running a web browser, irrespective of its oper-
ating platform. Indeed, the POS device may be implemented
using a simplified computing device having minimal comput-
ing power. For example, the POS device may be implemented
as a budget computer tablet having basic computing and
communications capabilities.

With reference to FIG. 3, a web page 31 is shown within a
web browser 33. Preferably, web browser 33 is run within a
computing device (i.e., data processing device such as com-
puting device 51 shown in FIG. 4), which may function as a
POS device. As it is known in the art, web browser 33 pro-
vides an interface for accessing web pages within a TCP/IP
network, such as the Internet, and typically includes an
address field 35 in which one may enter a network address for
accessing a desired web page. For example, web page 31 may
be maintained (i.e., placed) in intelligent module 37 and
downloaded to web browser 33. Alternatively, web page 31
may be incorporated into (i.e., be resident by default in) the
computer device on which web browser 33 resides. Web page
31 is preferably written in a markup language, such as HTML
and/or its variants, and supports script languages, such as
JavaScript.

In the present embodiment, web browser 33 is in commu-
nication with one or more printers, Printer]D_ 1 and Print-
erID_ 2, via intelligent module device 37. Optionally, these
printers may be POS printers (i.e., receipt printers) and may
optionally print onto respective rolls of paper 39a and 395.

Preferably, intelligent module 37 communicates with web
page 31 via at least one print application program interfaces,
i.e., print AP, labeled API__1 through API_ 3. Forillustration
purposes, print application program interfaces API 1
through API_ 3 are shown embedded within web page 31,
and they provide an interface to respective print script appli-

US 9,098,226 B2

19

cations, such as Print_Script_App_1 through Print_
Script_App_ 3. If desired, the functionality of all print script
applications may be combined and accessed via a single print
API. Further preferably, the print script applications are Java
script applications that provide various printer functions, as
described below, and are accessible via at least one print API.
API 1 through API 3 (and their respective print script
applications Print_Script_App__1 through Print_
Script_App_ 3) may be provided as part of a library of print
APIs to web page developers to incorporate the present print-
ing capabilities.

API__1 through API_ 3 provide a print interface for web
page 31, and print script applications Print_Script_App__1
through Print_Script_App_ 3 are designed to provide print-
ing capabilities and/or to communicate with intelligent mod-
ule 37. The print APIs and print script applications may be
embedded together as a unit within web page 31, such as
illustrated by API__1+Print_Script_App__1 and by API_ 2+
Print_Script_App_ 2. In this case, both may be addressed
under the common term of “API” or “print API”, and this
“API” would thus handle both the interfacing with web page
31, the creation of a print document, and the sending of the
print document to the intelligent module 37.

As it may be understood by one versed in the art, print APIs
may be instances of a specific software class (as defined in
object oriented languages), and they may be created by means
of a constructor (as defined in OOP languages). In one
embodiment, a print API may include a constructor for ini-
tializing the API.

In another embodiment, the print API and its correspond-
ing print script application may be split such that the print API
is embedded the within the web page 31, but its corresponding
print script application is maintained separate within intelli-
gent module 37. This is illustrated by API__3 being embedded
within web page 31 while its corresponding printer script
application, Print_Script_App_ 3, is maintained within intel-
ligent module 37. In this manner, some of the computing
resources needed by Print_Script_App_ 3 may be offloaded
from the device on which web browser 33 resides and trans-
ferred to intelligent module 37. In this case, APl 3 would
send all data necessary for defining a printed document to
Print_Script_App_ 3, which would then create a correspond-
ing print document within intelligent module 37 and send the
resultant print document to a specified printer. The separating
of the print API from its corresponding print script applica-
tion also permits the updating of the script application within
the intelligent module 37 without altering the print API within
the web browser. In this case, web developers may be pro-
vided with a library of print API for incorporation into their
web pages, but the details of the implementation of the cor-
responding print script applications may be maintained in
intelligent module 37 or in a network server and thus be kept
hidden from the web developers.

In a preferred embodiment, each print APl communicates
directly with intelligent module 37. Therefore, intelligent
module 37 is configured to receive (i.e., be assigned) a net-
work address, illustrated as IP_ADD_ 1. This network
address may be a static address or a dynamically assigned
address.

Each print API is preferably provided with an address
property element (i.e., address data field) configured to
receive the network address of intelligent module 37, by
which each print API may address its communication to intel-
ligent module 37. Ifthe network address of intelligent module
37 is static (i.e., fixed), the address property element within
each API may be manually set. Alternatively if the network
address of is dynamic, a network address resolution service

10

15

20

25

30

35

40

45

50

55

60

65

20

may be used to determine the network address of intelligent
module 37 and enter the resolved address in each print API’s
address property element. Further preferably, the address
property element is configured to set a timeout period. This
timeout period may indicate a maximum amount of time
allotted for receiving an acknowledgement, or other response,
from the intelligent module. Preferably, the print API
includes a step, or process, for canceling a print job (or a
submitted print request) in response to the timeout period
elapsing.

Further preferably, each printer is identifiable by name, or
identification code (ID) or (network) address. For ease of
discussion, both printer ID and/or printer network address are
designated by reference characters “PrinterID_ 1> and “print-
erID__2”. Further for ease of discussion, whenever printer ID
is used, it is to be understood that “printer network address”
may be substituted since the present invention envisions using
a printer network address in place of printer IDs. Further
preferably, the name, printer ID and/or printer address is
provided to the print API’s. The print API’s may therefore
designate a target printer by name, printer ID and/or printer
network address to receive a printing request, or print docu-
ment.

In one embodiment, the print API’s address property ele-
ment is expanded to also receive the ID (or network address)
of the target printer. For example, the address property ele-
ment may be configured to set the device identification (the
ID or network address) of the target printer, which designates
it as the printer to which the document to be printed should be
sent. The print API may further have a receive event element
configured to obtain a response message from the printer. The
response message may include a print result, an error code
and/or a printer status. The error code or the printer status may
indicate one of an automatically recoverable error or an unre-
coverable error occurred. Thus, the print API may receive a
response message from the printer via the intelligent module
designated by the address property element. In this manner,
communications between a target printer and a print API are
conducted via the intelligent module specified in the address
property element. Additionally, the address property element
may be configured to set a timeout period. This timeout
period may indicate the maximum amount of time allotted for
receiving an acknowledgement, or other response, from the
intelligent module or from the printer. Preferably, the print
APl includes a step, or process, for canceling a print job (or a
submitted print request) for printing a document in the printer
designated by the address property element in response to the
timeout period elapsing.

Alternatively, the print APIs may send a printing request to
intelligent module 37 without designating a specific printer,
and intelligent module 37 may select a printer based on prox-
imity information to the device that issued to the printing
request or by determining which printer is available (i.e., not
busy). In this case, intelligent module 37 is preferably aware
of the locations of the devices on which the web pages are
running and the locations of the printers in order to select the
printer closest to the device that issued the printing request.
Further alternatively, once intelligent module 37 has selected
a printer for a specific device that issues a print request, the
selected printer preferably becomes assigned to that device
and all future print requests from the same device are sent to
the same selected printer.

Since each print API embedded within web page 31 can
directly communicate with intelligent module 37 by means of
its address property element (which holds the network
address of intelligent module 37), each print API may submit
printing requests at any time without user intervention or

US 9,098,226 B2

21

without submitting a print request to the web browser 33 on
whichitresides. For example at a checkout station, a print API
may submit for printing a description of each product item
being summed for purchase, as the product item is identified
(i.e., scanned) by the web browser and added to the overall
transaction summary. Thus, web page 31 may generate a print
document of any data (including newly generated data and/or
portion(s) of a display screen), and submit the print document
for printing at any desired time. For example, the API may
generate parts of a print document in segments (i.e., at differ-
ent times) and then combine and/or arrange the segments into
a composite print document to be sent to the printers. Alter-
natively, since in the present embodiment the preferred print-
ers are roll printers, the print API may send multiple segments
to the printers for printing, and send an instruction for cutting
the printed portion of the paper roll at the end of a printing
session (i.e., at the end of a commercial transaction at a
checkout station).

In operation, a print script application (or the APl itself if it
is combined with its corresponding print script application as
a single unit) includes a first method element (i.e., a first
executable routine, or executable method) to define a print
document by accumulating (i.e., adding) printer control
instructions into a command buffer and then executing the
accumulated printer control instructions. Preferably, the print
script application (or API) further include a second method
element (i.e., a second executable routine) configured to send
the defined print document to intelligent module 37. A printed
document may thus be created by executing the first and
second method elements, in turn.

In the present discussion, all or some of the recited soft-
ware methods may be replaced by software objects, as
defined in object oriented languages.

Intelligent module 37 is preferably implemented as a data
processing device (including, but not limited to: a control unit
circuit and/or central processing unit; and/or volatile/non-
volatile electronic memory; and/or data/control registers;
and/or signal busses; and/or electronic communication inter-
faces; and/or lookup table(s)). Intelligent module 37 may be
implemented as a stand-alone unit in its own physical encase-
ment, or may alternately be incorporated into (or physically
attached to) a printer, server, or other electronic device. In
operation, Intelligent module 37 receives a print document
from a print API embedded within web page 31, converts it (if
necessary) into a suitable print document for a specified (or
otherwise designated) printer, and sends it for printing to the
designated printer. Optionally, intelligent module 37 may
include printer drivers for each of the printers, and utilize the
printer drivers to define the suitable print document. Alterna-
tively, intelligent module 37 may receive a record of the
command buffer from a print API, create a print document by
executing the printer commands in the command buffer, and
send the created print document to the appropriate printer.
Still alternatively, the commands received from a print API
may be general printing descriptions, such as formatting
information and print content data, and the intelligent module
may then determine the necessary printer commands to gen-
erate a print document that best resembles the general print-
ing descriptions based on the capabilities of the designated
printer, and then send generated print document to the desig-
nated printer.

In the above discussion, the created print document may be
an XML print document or a bitmap print document or other
document description format known in the art.

As illustrated, printers PrintID__1 and PrintID_ 2 may be
POS printers that prints on paper rolls 39a and 395, respec-
tively. The printers may further have accessories such as a

20

30

40

45

50

55

22

(fully or partially removable) cover 41, a drawer 43, a buzzer
45, and a paper cutter (or auto cutter) 47. These accessories
are preferably controllable via the printer commands men-
tioned above, and relayed to the printers by intelligent module
37. Among the error codes or printer statuses that a target
printer may send to a print AP, as discussed above, may be an
indication that the cover is open. Similarly, an error code or
printer status may indicate that an error occurred in the auto
cutter. The printer may also have a sensor that detects if paper
is in the printer, and an error code or printer status may
indicate if no paper is detected by the sensor. Alternatively, an
error code or printer status may indicate if the document sent
to intelligent module 37 contains a syntax error. Alternatively,
an error code or printer status may indicate if a print API’s
target printer, as designated by the submitted printer ID, does
not exist.

As it would be understood PrintID__ 1 and PrintID_ 2 have
communication ports for communicating with intelligent
module 37. The error code or the printer status may indicate if
an error is detected on the communication port. An error code
or printer status may further indicate if the timeout period,
mentioned above, clapses. Alternatively, the error code or
printer status may indicate that printing operation is success-
fully completed. As mentioned above, the printer may be
connected to a drawer by a connector, which may have at least
one pin. In this case, the error code or the printer status may
indicate the status of a predetermined pin of the connector.

Alternatively, the error code or printer status may indicate
that the printer is oftline or waiting to be brought back online,
or that no response was received from the printer.

PrintID__1 and PrintID_ 2 may further have a switch for
feeding paper 394 and 395, and the error code or the printer
status may indicate when paper is being fed by operation of
the switch. The error code or printer status may further indi-
cate when buzzer 45 is turned on (i.e., actuated). The printers
or intelligent module 37 may have a spooler configured to
spool a print job for printing a document, and the error code or
the printer status may indicate if the spooler has stopped.

In the embodiment of FIG. 3, the present invention is
implemented as a system that may, or may not, be networked.
That is, the local device on which web browser 33 runs may be
a stand-alone device not connected to any specific central
server. Irrespective of whether the local device is a stand-
alone device or networked with other POS devices or
server(s), intelligent module 37 may function as a printer
control box relaying and translating communication (and
generating any necessary command and instruction) signals
between the printers and web page 31.

FIG. 4 illustrates a network implementation of the present
invention. All elements similar to those of FIG. 3 have similar
reference characters and are described above. As illustrated,
network 55 includes computing device 51, server 53, intelli-
gent module 37 and printer PrinterID_ 2. Computing device
51, server 53 and intelligent module 37 communicate via a
network communication channel 57, which may be a wired
channel, wireless channel or a combination of both. Comput-
ing device 51, which may be a computer tablet or other data
processing device, accesses web page 31 via web browser 33.
Optionally, web page (i.e., web application) 31 is accessed
from server 53 or from intelligent module 37. That is, web
application 31 may be maintained (i.e., stored or placed) in
(and accessed from) server 53 and/or in intelligent module 37.

Optionally, printer Printer]D_ 2 may include non-volatile
memory 59. In one embodiment, multiple predefined images,
such as logos, may be stored in memory 59 and identified/
addressed by ID code, such as LOGO__1 through LOGO__3.

US 9,098,226 B2

23

As is explained above, the print API defines a command
buffer in which printer control commands are accumulated.
Various types of control commands may be accumulated in
the command buffer. FIG. 5 illustrates some examples of
printer control commands 61 that may be accumulated in the
command buffer 63 in accord with the present invention. Each
command may result in one or more instructions necessary
for executing the command.

For example with reference to FI1G. 5, one of the commands
may be a text command for adding text for printing to the
command buffer. That is, the text command may define a data
field of definite or indefinite length in which text to be printed
is inserted. Another command may be a text setting command
for adding parameters that define (i.e., set) properties of the
text, to the command buffer. Such properties may include the
size, font, color, etc. of the inserted text. The text setting
command may set multiple different parameters. For
example, a first text setting parameter may specify a start
position for printing on paper, and another may set alignment
requirements. Other parameters may set language, font, style,
scale, and/or size of the inserted text. Additional text setting
parameters may include a parameter for specifying whether
to rotate the printed text, or whether to enable smoothing the
text.

Another command may be a paper feed command for add-
ing to the command buffer one or more instructions for feed-
ing the paper in the printer.

Still another command may be an image command for
adding a raster image for printing. As it is known in the art, a
raster image is typically a rectangular area that defines an
image as viewed on a display medium one point at a time,
such as bitmap, and defines an image file. Preferably, the print
APl includes a half tone property element, and a color image
rendered in the web application, is converted into the raster
image data for printing, by the image command, according to
a setting of the halftone property element. Preferably, the
halftone property element specifies at least one of a dithering,
error diffusion, and/or threshold for converting the color
image into the raster image data. The print API may also
include a brightness property element, which may specify a
gamma value in the range 0.1-10.0 for correcting the bright-
ness of the raster image data. In this case, the image command
may convert the color image into the raster image data for
printing according to a setting of the brightness property
element.

As is illustrated in FIG. 4, Printer]D_ 2 may include non-
volatile, NV, memory 59 for registering at least one logo. In
this case, it is preferred that there be a logo command for
adding a key code that identifies a specific logo to the com-
mand buffer for printing the identified logo. That is, the key
code specifies a specific logo (i.e., logos LOGO__1 through
LOGO__3) registered in NV memory 59.

Another command may be a barcode command for adding
an instruction of printing a barcode, to the command buffer.
Preferably, multiple barcode types are supported, and the
barcode command includes a barcode parameter that speci-
fies at least the barcode type desired, the width and height of
the barcode, and/or data to be converted (i.e., encoded) into
the selected barcode type.

Another command may be a symbol command for adding
an instruction of printing a two-dimensional symbol, to the
command buffer. The symbol command may include a sym-
bol parameter that specifies at least one of a type of the
two-dimensional symbol, an error correction level of the two-
dimensional symbol, or data to be converted to the two-
dimensional symbol.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

Preferably, another command is a first line command for
adding an instruction of drawing a first line to the command
buffer. The first line command may include a first line param-
eter that specifies a start position and an end position of the
firstline. The present invention may also include a second line
command for adding to the command buffer an instruction of
starting the drawing of a second line of indefinite length, and
providing a second line parameter that specifies a start posi-
tion of the second line but provides no line parameter for
specifying any end position of the second line. In this case, it
is preferred that the present invention include a third line
command for adding an instruction of finishing (i.e., stop-
ping) the drawing of the second line started by the second line
command. The third line command may include a third line
parameter that specifies an end position for the second line.

Still another command may be a page mode command for
adding to the command buffer an instruction of switching to
a page mode, and adding a print area in the page mode. That
is, the page mode may be a print mode wherein the print area
is defined, data is laid out in the print area, and the print area
is printed in a batch operation. The page mode may further
include at least one coordinate specitying a desired placement
location for the print area. A second page mode command
may add instruction(s) for ending the page mode initiated by
the first page mode command. A still third page mode com-
mand may at least one setting (i.e., setting parameter) to the
page mode defined by the first page mode command. The
third page mode command may include a third page param-
eter that specifies a direction for the printing in the page mode,
or coordinate(s) specifying a starting position for the printing
in the page mode. A fourth page mode command may further
add instruction(s) for drawing a predefined shape, such as a
line or a rectangle, in the page mode defined by the first page
mode command. The forth page command may include coor-
dinates specifying a start position and an end position of the
predefined shape, i.e., the line or the rectangle, within the
page mode. The forth page command may further include a
forth page parameter that specifies a type choice for the shape.
For example, the forth page parameter may specify a line type
or a rectangle type.

Another command maybe a paper cut command for adding
to the command buffer an instruction for cutting the paper,
i.e., the printing medium, such as by means of paper cutter 47.
The paper cut command may include a paper cut parameter
specifying either one of cutting the paper without first feeding
the paper or cutting the paper after feeding the paper.

As is shown FIG. 3, a printer in accord with the present
invention may have a drawer 43 connected to it. Assuming
this is the case, another command may be a drawer kick
command for adding an instruction of kicking (i.e., releasing
or unlatching) the drawer open to the command buffer. Pref-
erably, the drawer kick command includes a first drawer
parameter that specifies an ON time duration of a signal that
is applied to open the drawer. Further preferably, the drawer is
connected to the printer by two connectors, and the drawer
kick command includes a second drawer parameter specify-
ing (the release of) either one of the connectors that connect
the drawer and the printer.

As shown in FIG. 3, PrinterID__2 may include a buzzer 45.
If so0, then another command may be a buzzer command for
adding to the command buffer an instruction of turning on (or
actuating) the buzzer. The buzzer command may include a
buzzer parameter specitying a pattern or a number of times
that actuation of the buzzer is repeated.

US 9,098,226 B2

25

A specific example of the present invention as imple-
mented in a POS system is as follows.

FIG. 6 illustrates a specific example of the present inven-
tion as applied in a POS system 79. As shown, the present
example includes a server 71, web browser 73 and intelligent
module 75, as discussed above. For illustration purposes,
intelligent module 75 is identified as “TM intelligent Pinter”
to indicate that it may consist of the combination of one or
more intelligent modules in communication with one ore
more printers. Web browser 73 may be executed within a POS
device (such as an electronic/computerized cash register),
and web browser 73 accesses a web page 77, as discussed
above. For ease of discussion, the printing mechanism/
method of the present invention as applied in the present POS
system 79 is termed “ePOS-Print”.

ePOS-Print provides functionality to control POS printers
in a multi-platform environment. Using ePOS-Print, data can
be directly printed from Web browsers on personal comput-
ers, smart phones, or tablet computers to TM intelligent print-
ers (i.e., the combination of one or more intelligent modules
and one or more printers).

In addition, print images rendered in HTML5 Canvas can
be printed. As it is known in the art, HITMLS5 Canvas is a
container for graphics, and provides a way to draw graphics
via scripting. ePOS-Print provides the API (equivalent to
“print API” in the present discussion) for print commands.
When a print document (Request) is sent via HT'TP from the
host (i.e., the device or terminal on which web browser 73 is
running) to an ePOS-Print Service of a TM intelligent printer
75, ePOS-Print processes the printing of that document and
returns a response document (i.e., a response).

The present implementation includes many features. For
example, as long as the present system is in a network envi-
ronment, a terminal with an HTML5-supported web browser
can perform printing from anywhere. Installation of printer
drivers and plug-ins are not required. No PCs or servers are
required for printing. The present system allows printing
from public and private network clouds. The present inven-
tion further allows printing in any languages supported by
web browsers, in general. The present invention automati-
cally checks the status of the TM printer before printing.
There is no need for checking the status of the TM printer in
advance. The present system does not respond to a printer’s
function to automatically send its status (such as an AutoSta-
tusBack function). Instead, the present system is capable of
sending an empty print command and checking (i.e., deter-
mining) the status of the TM printer based on the result of the
command transmission. Nonetheless, to change the printer
settings, utility programs dedicated to each printer, or other
utility programs, may be used. Thus, the present invention
allows printing by TM printers via TM intelligent printers.
The present invention thus may provide both an ePOS-Print
API and an ePOS-Print-Canvas API. As is discussed above,
the present invention further allows device fonts to be used for
printing, allows barcode printing, allows printing of images
rendered in HTMLS Canvas and allows TrueType fonts to be
used for printing. Preferably, the present invention allows
device fonts to be used for printing and allows barcode print-
ing. Further preferably, the ePOS-Print-Canvas API allows
printing of images rendered in HTMLS5 Canvas and allows
TrueType fonts to be used for printing.

FIG. 7 shows examples of the type of printing that may be
implemented by means of the ePOS-Print API. Two receipts
81 and 83 are shown. Receipt 81 shows examples the execu-
tion of various print commands, as discussed above. Receipt
81 shows examples of printing a logo, text alignment (cen-
tered), paper feed, and paper cut. Receipt 83 shows examples

10

15

20

25

30

35

40

45

50

55

60

65

26

of executing print commands for: printing a raster image,
printing text in a double-sized width style, scaling such as
scale=x6 (horizontal) and x4 (vertical), alignment (center),
and printing a barcode.

FIG. 8 shows examples of the type of printing that may be
implemented by means of the ePOS-Print-Canvas API. In the
present example, the graphic created by HTMLS Canvas
includes a barcode, which is typically a monochrome graphic
(or image) and a pictorial graphic immediately above the
barcode. The pictorial graphic may be monochrome, or gray-
scale, or color.

FIG. 9 is an example of print flow in accord with an
embodiment of the present invention. The present example
shows a server, a wireless LAN router, web browser, a TM
intelligent printer, and printers that can be controlled. Prefer-
ably, the web application (i.e., web page) in accord with the
present invention may be placed (i.e., maintained) in the
server, and the web browser displays the web application. In
operation, the Web browser may send print data to the TM
intelligent printer (or intelligent module), the TM intelligent
printer sends the print data to the appropriate printers under its
control, and these printers print the data. The TM intelligent
printer then returns a response document to the web browser
(i.e., to the terminal that runs the web browser).

The ePOS-Print API may provide multiple functions. For
example, it can provide print setting functions, such as align-
ment (for example text alignment), line feed space, text rota-
tion, and page mode. It can also provide multiple character
data settings (for example, text characters), such as language,
font (device font), double-sizing, scale, smoothing, and print
position. It can also provide character style settings, such as
inversion of black and white, underline, and bold. It may
further include printer operation controls such as paper feed
setting (in dots count or in line count). The ePOS-Print API
preferably also provides image printing (i.e., raster image and
NV graphics), barcode printing, and two dimensional symbol
printing. It may further provide a ruled line setting, drawer
kick function, buzzer function, ESC/POS command trans-
mission, response document acquisition (print result, printer
status and/or system error status).

The ePOS-Print-Canvas APl may also provide multiple
functions. For example, it may provide printing of images
(raster images) rendered in HTMLS Canvas, feed and cut
functions, and response document acquisition (such as print
result, printer status, and/or system error status).

The preferred web browser is therefore a browser that
supports HTMLS. Examples of web browsers that support
HTMLS5 are Windows Internet Explorer 9 or later, Mozilla
Firefox 3.6 or later, Google Chrome 7 or later, Safari in
1084.0 or later, and the standard browser in Android 2.2 or
later.

A system construction example in accord with the present
invention is shown in FIG. 10. This example again shows a
(web) server (in which the web applications, i.e., web pages,
are placed), a terminal (on which a web browser that supports
HTMLS is installed), an optional wireless LAN router, a TM
intelligent printer, and the printers that can be controlled by
the TM intelligent printer. Like before, the TM Intelligent
Printer receives and prints print-data sent from the web
browser and/or controls other devices, and the printers under
its control print the print-data received from the TM intelli-
gent printer.

FIG. 11 shows the registering of a web application into a
TM intelligent printer. As is explained above, the terminal
executes (i.e., accesses) the web application (i.e., web page)
using a browser, and sends device control (which may include

US 9,098,226 B2

27
print data) to the TM intelligent printer. The TM intelligent
printer then prints the received print data sent from the web
browser.

In a preferred embodiment of the present invention, some
restrictions may be imposed. For example, a printer’s drawer
and buzzer may not be used together. Naturally, the buzzer
function cannot be used if the printer does not have a buzzer.

The present invention may also respect restrictions pro-
vided by specific web browsers. For example, Internet
Explorer 9 does not allow printing to the printer to be per-
formed from security-protected Web pages (which are typi-
cally identified by the address header “HTTPS”).

FIG. 12 provides an example of a sample program screen
created using the ePOS-Print API in accord with the present
invention. The following examples assume that the web
server is configured using IIS (Microsoft Internet Information
Services). Box 1 illustrates a queue ticket, box 2 illustrates a
coupon, and box 3 identifies a “settings™ actuation button. In
one embodiment, box 1 may print queue ticket numbers and
box 2 naturally prints coupons.

FIG. 13 is an example of a settings window that may be
called up in response to actuation of the settings button of
FIG. 12. The settings may include the network address (i.e.,
1P address) of the intelligent printer (i.e., of the intelligent
module as explained above), the device ID of the target
printer, a timeout setting, and an option to print in grayscale.

FIG. 14 shows a first sample print-out using the ePOS-Print
API and a second sample print-out using the ePOS-Print-
Canvas API. As illustrated, the ePOS-Print-Canvas API is
preferably used to print graphics.

FIG. 15 shows a sample flow chart illustrating a process
step flow from its initial display state up to print job comple-
tion. This is an example of queue ticket number issuance
printed using the ePOS-Print API. The process begins by
opening the web application (i.e., the sample program web
page), step 91. The settings are then entered, step 93. Some
settings may include the IP address of the TM intelligent
printer, the device ID of the printer to be controlled and a
(print) timeout time. The proper queue ticket is crated by
selecting (i.e., clicking) an “Issue queue ticket number”
option, as illustrated by step 95. An ePOS-Print Builder
Object may then be called to create the print data (step 95).
The ePOS-Print Object then creates the prints (step 99).

FIG. 16 shows a sample flow chart illustrating a process
step flow for coupon issuance. This is an example of the
ePOS-Print Canvas API. The process flow begins by opening
the web page in accord with the present invention (step 101).
If needed, one may enter settings (step 103). Example of
settings are the IP address of the TM intelligent printer, the
device 1D of the printer to be used for printing, and a print
timeout time. One then clicks (i.e., actuates/selects) an “issue
coupon” option (step 105). The web page then renders the
coupon in HTMLS Canvas (step 107). Finally in step 109, the
web page issues a print request to the TM intelligent printer
(i.e., intelligent module) using the ePOS-Print Canvas API
(i.e., the ePOS-Print Canvas API Object).

FIG. 17 is an example of an operating environment in
accord with the present invention. Basically, FIG. 17 provides
a system configuration diagram for some sample programs
discussed below. FIG. 17 shows a web server with a fixed IP
address of (192.168.192.10). The web server may configure
the environment settings. The web server communicates
directly with a wireless LAN router, which may have a fixed
IP address of, for example, (192.168.192.1). The wireless
LAN router provides a communication path (such as a wired
connection) between the TM Intelligent Printer (which may
have a fixed IP address of, for example (192.168.192.20)) and

20

25

30

35

40

45

55

28

an optional second printer that may be controlled by the TM
Intelligent Printer. Preferably, the optional second printer also
has a fixed IP address of, forexample (192.168.192.21). Inthe
present implementation, the wireless LAN router provides a
wireless communication link to a terminal that has an
HTMLS5-supported web browser, and on which the web page
in accord with the present invention may be executed. In the
present example, the terminal has a dynamic network address
(illustrated as (192.168.192.XXX)), and which can be issued
by DHCP. For example, the wireless LAN router may issue an
IP address to the terminal by DHCP.

FIG. 18 shows a process flow for configuring the environ-
ment settings for a sample program. In step 111, one begins
by configuring the router settings, such as SSID, IP address,
DHCP, and allocated IP address. Next in step 113, one con-
figures the computer settings. This may be divided into a first
sub-step 113a of configuring the network settings for the
computer, such as the IP address, and a second sub-step 1135
of configuring the web server on the computer. In step 115,
one registers the program to execute. In the present example,
asample program called ePOS-Print_ API_UM_E_Sampleis
registered. One then provides terminal settings (step 117),
such as configuring the wireless LAN (Wi-Fi) settings of the
terminal to match the router settings so as to enable network
connection. In step 119, the network settings for the TM
Intelligent Printer are configured. This may be done via a web
browser. Next in step 121 the network settings for the printer
to be controlled are configured. These settings may be con-
figured by using a network setting utility, as is known in the
art. Optional device ID Settings are provided in step 123.
These settings may be configured via a web browser, but are
not required in the present sample program. Finally in step
125, any needed program settings may be configured via a
web browser. It is noted that no program settings are needed
in the present sample program.

FIG. 19 is an example of Network Settings for the TM
Intelligent Printer. One may begin by starting the web
browser and entering the IP address of the TM intelligent
printer interface into the address bar 127. One may then select
a configuration, such as wired TCP/IP or wireless TCP/IP, as
illustrated by 129. The “TCP/IP Setting” screen then appears
and one configures the network settings for the TM intelligent
printer, as illustrated by 131. To test the IP address, one may
submit a status sheet using the TM intelligent printer.

FIG. 20 is an example of device settings. For example, one
may set the ID of the printer to be controlled by ePOS-Print
into the TM intelligent printer. On may use the web browser
to enter the IP address of the TM Intelligent Printer (133). One
then selects device to configure (135). A “Device Settings”
screen 137 appears. FIG. 21 shows examples of devices set-
tings that may be configured. Information 139 on the regis-
tered devices is displayed.

Execution of the above configuration and registration
sequence will result in the sample program screen of FIG. 12.

Next is discussed a guide for programming using ePOS
print, i.e., using print APIs in accord with the present inven-
tion.

Preferably, there are two types of print modes: standard
mode and page mode. In standard mode, characters are
printed line by line. The line feed space is adjusted based on
the font size and the height of images, i.e., barcodes, etc. The
standard mode is suitable for printing receipts, or other types
of printing that require the paper length to change according
to the print space.

In page mode, a print area is set (i.e., defined), data is laid
out in it, and the data is printed in a batch operation. For
example, characters, images, and barcodes may be laid out in

US 9,098,226 B2

29

the print area by position coordinates, the resultant print area
is then printed in a batch operation.

FIG. 22 show a sample work flow for programming using
the ePOS-Print API. A first step 141 is to embed the ePOS-
Print API in a web page. Preferably, the ePOS-Print API is
provided as JavaScript, and may follow the following file
naming convention: “epos-print-2.x.x.js”. That is, the ePOS-
Print API is provided so that ePOS-Print can be used as a
JavaScript on a client device. The ePOS-Print API is used by
embedding epos-print-2.x.x.js into applications (such as web
pages). To use the ePOS-Print API, epos-print-2.X.X.js is
placed (i.e., provided) on the Web server, and distributed to
clients. For example, the ePOS-Print API script may be
embedding into a web page by using the HTML <script>tags.
FIG. 23 shows an example of using the HTML <script>tagto
embed an ePOS-Print API.

The next step 143 is to create the document that is to be
printed. A print document may be created using an ePOS-
Print Builder object. For example, an ePOS-Print Builder
object is created using the constructor for it, and the print
document is created using the object’s methods. The print
document may be acquired using a toString method, or other
print API methods/functions, as listed below. FIG. 24 shows
an example a program code segment for creating a print
document.

To create a text print document, one stores the font settings
into the command buffer using text methods and then creates
the print document. FIG. 25 illustrates a sample script code
for creating a text print document. The sample script code
uses a font called FontA, sets a text scale of x4 horizontal and
x4 vertical, and sets the style to Bold. The result of the sample
script is to create a print document with the text, “Hello
World” with the specified text settings.

FIG. 26 provides sample script code creating a graphic
print document. More specifically, the sample script code
creates a print document for the image file logo.bmp. Basi-
cally, it describes one way of printing a raster image. Another
method of printing graphics registered in non-volatile
memory within a printer is discussed below. To create the
graphic print document in the present example, a raster image
obtained by rendering an image in HITMLS5 Canvas is stored
into the command buffer using an addImage method.

Another method for creating a print document, as illus-
trated in step 143 of FIG. 22 is to create a page mode print
document. FIG. 27 illustrates sample code for creating a page
mode print document. The examples adds the phrase, “Hello
world” to a print region. The following example uses an
addPageBegin method. When the addPageBegin method is
stored in the command bufter, the page mode starts. The print
area is stored into the command buffer (by means of an
addPageArea method), and the print start position is stored
(by means of an addPagePosition method) into the command
buffer. The print start position is then specified according to
the print data. The methods are then stored into the command
buffer to create the print data. For the end of page mode, a
PageEnd method is stored into the command buffer.

Returning to FIG. 22, following the print document cre-
ation step 143, is a step 145 for transmitting the created print
document. FIG. 28 provides sample code for transmission of
aprint document. In the present example, a print document is
sent using an ePOS-Print object. The ePOS-Print object may
be created using the constructor and the end point address for
the printer to be used for printing as well as the print docu-
ment may be specified (i.e., input) into a send method to send
the document. FIG. 29 provides a table with details about the
printer end point address.

10

15

20

25

30

35

40

45

50

55

60

65

30

As shown in FIG. 22, the last step 147 is reception of the
print data. The print result can be received by setting a call-
back function using an onreceive property (discussed below)
of the ePOS-Print object. FIG. 30 provides sample code for
implementing a callback function. Examples of the informa-
tion that may be obtained include the print result, error codes,
and printer status. FIG. 31 provides an example of an error
handling method for a callback function. FIG. 32 illustrates
the use of the status event notification function to check the
printer status without printing.

FIG. 33 illustrates a workflow for programming using
ePOS-Print-Canvas API. like in the case of ePOS-Print API,
ePOS-Print-Canvas API begins with a step 151 of embedding
the ePOS-Print-Canvas API into a web page. FIG. 34 shows
sample code for embedding an ePOS-Print-Canvas API. For
illustration purposes, the ePOS-Print-Canvas API is shown as
JavaScript, and preferably follows the naming convention:
“epos-print-2.x.X.js”. The ePOS-Print-Canvas API may be
maintained (i.e., placed/kept/stored) in the web server and
then distributed to clients for embedding into their applica-
tions (i.e., web pages). As shown in the FIG. 34, the ePOS-
Print-Canvas API may be embedded into a web application by
using HTML <script> tags.

The next step 153 in FIG. 33 is to render in HTMLS-
Canvas. FIG. 35 provides sample code for rendering in
HTMLS5-Canvas. The next step 155 is to print the rendered
canvas image. FIG. 36 provides sample code for transmitting
a print document for printing. To print the content drawn
HTMLS5-Canvas using the ePOS-Print Canvas API, an ePOS-
Print Canvas API object is created using the constructor. To
use the Print method, one specifies the end point address for
the printer to be used for printing as well as the canvas content
and whether to select paper cut, and then the document is
print.

The TM intelligent printer (i.e., the intelligent module)
receives the transmission, as indicated by step 157. FIG. 37
shows sample code for printing a result receipt and callback
function. As before, the print result can be received by setting
a callback function using the onreceive property of the ePOS-
Print Canvas API object. In this manner, one can obtain infor-
mation on the print result, error code and printer status. FIG.
38 provides sample code for error handling by a callback
function. Thus, the status event notification function can be
used to check the printer status without printing, as shown in
the sample code of FIG. 39.

As is mentioned above, the ePOS-Print API provides many
methods for creating a print document. FIGS. 40, 41, 42a and
425 list some of the methods and components of the ePOS-
Print API as defined by an ePOSBuilder object.

As it would be understood by one versed in the art, a new
ePOS-Print Builder object is created and initialized by means
of'a contractor, an the object can then be used to create a print
document for printing control commands that specify strings
or graphics to be printed, paper cut, etc. Preferably, this con-
structor follows the following syntax: “ePOSBuilder()”. FIG.
43 provides sample code for the constructor of an ePOS-Print
Builder object.

The syntax for adding text alignment settings to the com-
mand buffer may follow syntax: addTextAlign(align), where
“align” specifies the type of alignment. FIG. 44 provides
examples of types of alignment parameters. FIG. 45 provides
the return value for the ePOS-Print Builder object, and FIG.
46 illustrates exception error. FIG. 47 provides sample code
illustrating the use of text alignment.

The method to add a line feed space setting to the command
buffer preferably follows the syntax: addTextLineSpace
(linespc). Parameter “linespc” specifies the line feed space (in

US 9,098,226 B2

31

dots), and preferably an integer in the range from 0 to 255.
FIG. 48 provides sample code to set the line feed space to 30
dots.

The method to add a text rotation setting to the command
buffer preferably follows the following syntax: addTextRo-
tate(rotate), where “rotate” is a Boolean that specifies
whether to rotate text. FIG. 49 illustrates Boolean values for
the rotate parameter. FIG. 50 provides sample code to set text
rotation.

The method to add the printing of text to the command
buffer preferably follows the syntax: addText(data), where
the parameter “data” is the character string to be printed.
Nonprintable characters, such as horizontal tab and line feed
may use escape sequences, as illustrated in FIG. 51. FIG. 52
provides sample code illustrating the use of addText(data).

The method to add the language setting to the command
buffer preferably follows the syntax: addTextlang(lang),
where parameter “lang” is a string that specifies the target
language. FIG. 53 provides examples of parameter “lang” to
designate a target language. FIG. 54 provides sample code
illustrating the use of method addTextLang(lang).

The method to add the text font setting to the command
buffer preferably follows syntax: addTextFont(font), wherein
parameter “font” is a string that specifies a desired font. FIG.
55 illustrates sample values for the font parameter, and FIG.
56 provides sample code illustrating the use of the addText-
Font(font) method.

The method to add the smoothing setting to the command
buffer preferably follows syntax: addTextSmooth(smooth),
where parameter “smooth” is a Boolean that specifies
whether to enable smoothing. FIG. 57 illustrates possible
values for parameter “smooth”, and FIG. 58 provides sample
code illustrating the use of method addTextSmooth(smooth).

The method to add the double-sized text setting to the
command buffer preferably follows syntax: addTextDouble
(dw, dh), where dw is an optional Boolean parameter that
specifies the double-sized width and dh is an optional Bool-
ean parameter that specifies the double-sized height. FIG. 59
describes parameter values for dw, and FIG. 60 describes
parameter values for dh. FIG. 61 provides sample code to set
the text size to double width and double height.

The method to add the text scale setting to the command
buffer preferably follows syntax: addTextSize(width, height),
where parameter “width” is an optional number parameter
that specifies the horizontal scale of text and parameter
“height” is an optional number parameter specifies the verti-
cal scale of text. FIG. 62 illustrates possible values for param-
eter “width” and FIG. 63 illustrates possible values for
parameter “height”. FIG. 64 shows sample code to set a
horizontal scale of x 4 and a vertical scale of x 4.

The method to add the text style setting to the command
buffer preferably follows syntax: addTextStyle(reverse, ul,
em, color), where “reverse” is an optional Boolean parameter
that specifies whether to inversion the black and white for
text, “ul” is an optional Boolean parameter that specifies an
underline style, “em” is an optional Boolean parameter that
specifies a bold style, and “color” is an optional string param-
eter that specifies the color. FIG. 65 shows possible values for
parameter “reverse”. FIG. 66 shows possible values for
parameter “ul”. FIG. 67 shows possible values for parameter
“em”. FIG. 68 shows possible values for parameter “color”.
FIG. 69 provides sample code to set the underline style.

The method to add the horizontal print start position of text
to the command buffer preferably follows syntax: addText-
Position(x), where “x” is a number parameter that specifies
the horizontal print start position (in dots) and is an integer in

10

15

20

25

30

35

40

45

50

55

60

65

32

the range from 0 to 65535. FIG. 70 shows sample code to set
the print position at 120 dots from the left end.

The method to add paper feeding in dots to the command
buffer preferably follows syntax: addFeedUnit(unit), where
“unit” is a number parameter that specifies the paper feed
space (in dots) and is an integer in the range from 0 to 255.
FIG. 71 shows sample code to feed paper by 30 dots.

The method to add paper feeding in lines to the command
buffer preferably follows syntax: addFeedLine(line), where
“line” is an integer number parameter that specifies the paper
feed space (in lines) and in the range from 0 to 255. FIG. 72
shows sample code to feed paper by 3 lines.

The method to add a line feed to the command buffer
preferably follows syntax: addFeed(). FIG. 73 shows sample
code to start a new line after printing a character string.

The addImage method adds raster image printing to the
command buffer, and prints graphics rendered in HTMLS-
Canvas. The method further converts the specified range in a
RGBA full-color image of HTMLS5-Canvas into raster image
data according to the settings of the halftone and brightness
properties. It is assumed that one pixel in an image equals to
one printer dot, and when an image contains any transparent
color, the background color of the image is assumed to be
white. Preferably it follows syntax: addImage(context, X, y,
width, height, color, mode), where “context” is context
parameter that specifies the 2D context of HTML5-Canvas,

[Taxt)

X is an integer number in the range from 0 to 65535 and
specifies the horizontal start position in the print area, “y” is
an integer number in the range from 0 to 65535 and specifies
the vertical start position in the print area, “width” is an
integer number in the range from 0 to 65535 and specifies the
width of the print area, “height” is an integer number in the
range from 0 to 65535 and specifies height of the print area,
“color” is an optional string parameter that specifies color
(FIG. 74 shows sample values for parameter “color” within
the addIlmage method.), and “mode” is an optional string
parameter that specifies the color mode (FIG. 75 shows
sample values for parameter “mode” within the addImage
method.). FIG. 76 provides sample code to print an image 300
dots wide and 300 dots high in page mode.

The method to add NV logo printing to the command
buffer preferably follows syntax addLogo(keyl, key2). This
method prints a logo that is already registered in the NV
memory of a printer. Parameter key1 is a number that speci-
fies a first key code 1 of an NV logo and is preferably an
integer in the range from 0 to 255. Parameterkey2 is a number
that specifies a second key code 2 of an NV logo and is
preferably an integer in the range from 0 to 255. FIG. 77
shows sample code illustrating the use of the addlogo
method.

The method to add barcode printing to the command buffer
preferably follows syntax: addBarcode(data, type, hri, font,
width, height). Parameter “data” is string that specifies the
barcode data as a string. Parameter “type” is a string that
specifies the barcode type. FIGS. 78 to 81 provide examples
of'barcode types. Parameter “hri” is an optional string param-
eter that specifies the HRI position. FIG. 82 illustrates some
possible values for the hri parameter. Parameter “font™ is an
optional string that specifies the HRI font. Parameter “width”
is an optional integer number that specifies the width of each
module in dots and is preferably in the range from 2 to 6.
Parameter “height” is an optional integer number that speci-
fies the barcode height in dots and is preferable in the range
from 1 to 255. FIG. 83 provides sample code illustrating how
to print barcodes.

The method to add two-dimensional symbol printing to the
command buffer preferably follows syntax: addSymbol(data,

US 9,098,226 B2

33

type, level, width, height, size). Parameter “data” is prefer-
ably a string that specifies two-dimensional (2D) symbol data
as a character string. FIGS. 84 and 85 provide examples of
2D-Code type descriptions for parameter “data” within the
addSymbol method. Parameter “type” is string that specifies
the two-dimensional symbol type. FIG. 86 provides sample
values for parameter “type” within the addSymbol method.
Parameter “level” is a string that specifies the error correction
level. FIG. 87 provides sample values for parameter “level”
within the addSymbol method. The “width” parameter is an
integer number in the range from 0 to 255 that specifies the
module width. The “height” parameter is an integer number in
the range from 0 to 255 that specifies the module height. The
“size” parameter is an integer number in the range from O to
65535 that specifies the two-dimensional symbol maximum
size. FIG. 88 provides sample code to print two-dimensional
symbols.

The method to add horizontal line printing to the command
buffer to draw horizontal lines preferably follows syntax
addHLine(x1, x2, style), where parameter x1 is an integer
number in the range from 0 to 65535 and specifies the start
position of the horizontal line (in dots), parameter x2 is an
integer number in the range from 0 to 65535 and specifies the
end position of the horizontal line (in dots), and parameter
style is a string that specifies the line type. FIG. 89 illustrates
some style parameters for the addHline method. FIG. 90
shows sample code to draw double horizontal lines at a posi-
tion between 100 dots and 200 dots from the left end and at a
position between 400 dots and 500 dots from the left end.

The method to add the beginning of a vertical line to the
command butffer (i.e., to starts the drawing of vertical lines)
follows syntax addVLineBegin(x, style), where parameter x
is an integer number in the range from 0 to 65535 and speci-
fies the start position of the vertical line (in dots), and param-
eter “style” is an optional string that specifies the line type.
FIG. 91 provides examples of parameter style for the addV-
LineBegin method. FIG. 92 provides sample code to draw
thin vertical lines at 100 dots and 200 dots from the left end.

The method to add the end of a vertical line to the command
buffer (i.e., to finish drawing vertical lines) follows syntax
addVLineEnd(x, style), where parameter x is an integer num-
ber in the range from 0 to 65535 and specifies the end position
of the vertical line (in dots), and parameter “style” is an
optional string that specifies the type of line one wants to
finish drawing. FIG. 91 provides examples of parameter style
for the addVLineEnd method. FIG. 94 provides sample code
to draw thin vertical lines at 100 dots and 200 dots from the
left end.

The method to add the switching to page mode to the
command buffer (i.e., to start the page mode process) follows
syntax addPageBegin(). The method to add the end of page
mode to the command buffer (i.e., to end the page mode
process) follows syntax addPageEnd(). FIG. 95 shows
sample code to print characters “ABCDE” in page mode.

Method addPageArea(x, y, width, height) adds the print
area in page mode to the command buffer to specify the print
area in page mode (coordinates). After this API function, a
print data API function (such as the addText method) should
be specified. Parameter “x” is an integer in the range from O to
65535 and specifies the origin of the horizontal axis (in dots),
where 0 is the left end of the printer’s printable area. Param-
eter “y” is an integer in the range from 0 to 65535 and
specifies the origin of the vertical axis (in dots), where O is the
position in which no paper feed has been performed. Param-
eter “width” is an integer number from 0 to 65535 that speci-
fies the width of the print area (in dots). FIG. 96 shows sample

30

40

45

55

34

code to specify the print area with the origin (100, 50), a width
ot 200 dots, and a height of 30 dots and print the characters
“ABCDE”.

The method to add the page mode print direction setting to
the command buffer (i.e., to specify the print direction in page
mode) follows syntax addPageDirection(dir). This function
may be omitted if rotation is not required. Parameter “dir” is
astring that specifies the print direction in page mode. FI1G. 97
provides some examples for parameter “dir” of method
addPageDirection. FIG. 98 provides sample code to print
characters “ABCDE” by rotating them 90 degrees clockwise.

The method to add the page mode print-position-set area to
the command buffer (i.e., to specify the print start position
(coordinates) in the area specified by the addPageArea
method) has syntax addPagePosition(x, y). Parameter x is an
integer number from 0 to 65535 that specifies the horizontal
print position (in dots). Parametery is an integer number from
0 to 65535 that specifies the vertical print position (in dots).
FIG. 99 shows sample code to specify (50,30) for the print
start position in the area specified by the addPageArea
method and print the characters “ABCDE”.

The method to add line drawing in page mode to the com-
mand buffer (i.e., draws a line in page mode) follows syntax
addPagel.ine(x1, y1, x2,y2, style). Parameter x1 is an integer
number from 0 to 65535 that specifies the horizontal start
position of the line (in dots). Parameter y1 is an integer
number from 0 to 65535 that specifies the vertical start posi-
tion of the line (in dots). Parameter x2 is an integer number
from O to 65535 that specifies the horizontal end position of
the line (in dots). Parameter y2 is an integer number from O to
65535 that specifies the vertical end position of the line (in
dots). Parameter “style” is a string that specifies the line type.
FIG. 100 provides examples of the “style” parameter in
method addPagel ine. FIG. 101 provides sample code to draw
a thin solid line between start position (100, 0) and end
position (500, 0).

The method to add a rectangle drawing in page mode to the
command buffer (i.e., to draw a rectangle in page mode)
follows syntax addPageRectangle(x1, yl, x2, y2, style).
Parameter x1 is an integer number from 0 to 65535 and
specifies the horizontal start position of the line (in dots).
Parameter y1 is an integer number from 0 to 65535 and
specifies the vertical start position of the line (in dots). Param-
eter X2 is an integer number from 0 to 65535 and specifies the
horizontal end position of the line (in dots). Parameter y2 is an
integer number from 0 to 65535 and specifies the vertical end
position of the line (in dots). Parameter “style” is a string that
specifies the line type. FIG. 102 provides examples of the
“style” parameter in method addPageRectangle. FIG. 103
shows sample codeto draw a rectangle with a thin double line,
with the start position (100, 0) and the end position (500, 200)
as its vertexes.

The method to add paper cut to the command buffer (i.e., to
set/actuate) paper cut) follows syntax addCut(type), where
parameter “type” is a string that specifies the paper cut type.
FIG. 104 shows sample types for method addCut. FIG. 105
provides sample code to perform a feed cut operation.

The method to add a drawer kick to the command buffer
has syntax addPulse(drawer, time). Parameter “drawer” is a
string that specifies the drawer kick connector. FIG. 106
shows examples of parameter “drawer” for method addCut.
Parameter “time” is an optional parameter string that speci-
fies the ON time (i.e., duration) of the drawer kick signal. FIG.
107 shows examples of parameter “time” for method addCut.
FIG. 108 show sample code to send a 100 msec pulse signal
to pin “2” of a drawer kick connector.

US 9,098,226 B2

35

The method to add the turning ON of the buzzer to the
command buffer (i.e., to set the buzzer) follows syntax
addSound(pattern, repeat). Parameter “pattern” is an optional
string that specifies the buzzer pattern. FIG. 109 show
examples of buzzer patterns. Parameter “repeat” is an
optional string specifies the number of repeats. FIG. 110
shows examples of how to set parameter “repeat” in method
addSound. FIG. 111 shows sample code to repeat a sound
pattern “A” three times.

The method to add commands to the command bufter (i.e.,
to send ESC/POS commands) has syntax addCommand
(data), where “data” is an optional string that specifies ESC/
POS command as a character string.

The method to obtain a print document generated by an
ePOS-Print Builder object has syntax toString(). FIG. 112
shows sample code illustrating the use of method to String().

A halftone property is implemented by means of a halftone
processing method, whose object type is “string”. FIG. 113
shows the specitying of the halftone processing method to be
applied to monochrome (two-tone) printing. The default
value is HALFTONE_DITHER. FIG. 114 shows sample
code to set the halftone type as error diffusion.

Brightness correction may be set by setting a gamma value.
A gamma value in the range 0.1 to 10.0 is specified (i.e.,
available) for the brightness correction value. FIG. 115 pro-
vides sample code to set brightness as 2.2.

Commands, which are usually added by methods of the
ePOS-Print Builder object, can be operated directly from this
property for addition or deletion. FIG. 116 provides sample
code to clear the command buffer and reset it to the initial
state.

The constructor for an ePOS-Print object creates a new
ePOS-Print object and initializes it. The method to send a
print document created using an ePOS-Print Builder object to
control the printer and monitor the transmission result or the
communication status has syntax ePOSPrint(address), where
“address” is a optional string that specifies the URL (i.e.,
network address) of the printer to which a print document is
sent. FIG. 117 provides sample code illustrating the use of
ePOSPring(address).

The send method sends a print document created using an
ePOS-Print Builder object. Ithas syntax send(request), where
“request” is a string that specifies print document. FIG. 118
provides sample code illustrating the use of the send(request)
method.

The open method enables status event operation. It sends
the status of the printer specified by the address property
using an event, and updates the status at the interval specified
by an interval property. It has the syntax open(). FIG. 119
provides sample code illustrating the use of the open()
method.

The close() method disables status event operation. FIG.
120 provides sample code illustrating the use of the close()
method.

The address property is used to specify URL of the printer
to be used for printing. FIG. 121 provides an example of the
use of the address property.

The enabled property is a Boolean value that retains the
enabled/disabled setting for status event operation. The
enabled/disabled setting for status event operation is retained
using a logical value. This is read-only. The default value is
false. FIG. 122 provides an example of using the enabled
property.

The interval property specifies the interval of upgrading the
status. The interval of upgrading the status is specified in
milliseconds. It has a default value of 3000 ms (three sec-
onds), and a minimum value of 1000 ms (one second or

10

15

20

25

30

35

40

45

50

55

60

65

36

longer). When an invalid value is specified, it is assumed to be
3000 ms. FIG. 123 provides an example of using the interval
property.

The status property provides the status of a printer. This is
the status last obtained from the printer, and is read-only. FI1G.
124 provides an example of using the status property.

An onreceive event is a property that registers the callback
function and obtains a response message receipt event. It has
syntax: Function(response). The parameter of the callback
function include: a response as a parameter, response mes-
sage as name and object as object type. FIG. 125 shows some
properties of the response object. FIG. 126 shows value of
success. FIG. 127 shows value of code. FIG. 128 shows value
of status. FIG. 129 shows sample code to create and send a
print document, and to display the print result in a message
box.

The onerror event property registers the callback function
and obtains a communication error event. It has syntax: Func-
tion (error). FIG. 130 lists some properties of the error object.
FIG. 131 shows sample code to create and send a print docu-
ment and to display the HTTP status code in a message box
when a communication error occurs.

The onstatuschange event registers a callback function to
obtain a status change event. It has syntax: Function (status).
FIG. 132 provides an example of using the onstatuschange
property.

The ononline event registers a callback function to obtain
an online event. [t has syntax: Function (). FIG. 133 provides
an example of using the ononline property.

The onoffline event registers a callback function to obtain
an offline event. Its syntax is also Function (). FIG. 134
provides an example of using the onoffline property.

The onpoweroff event registers a callback function to
obtain a non-response event. Its syntax is also Function ().
FIG. 135 provides an example of using the onpoweroff event.

The oncoverok event registers a callback function to obtain
a cover close event. Its syntax is also Function (). FIG. 136
provides an example of using the oncoverok event.

The oncoveropen event registers a callback function to
obtain a cover open event. Its syntax is also Function (). FIG.
137 provides an example of using the oncoveropen event.

The onpaperok event registers a callback function to obtain
a paper remaining event. Its syntax is also Function (). FIG.
138 provides an example of using the onpaperok event.

The onpapernearend event registers a callback function to
obtain a paper near end event. Its syntax is also Function ().
FIG. 139 provides an example of using the onpapernearend
event.

The onpaperend event registers a callback function to
obtain a paper end event. Its syntax is also Function (). FIG.
140 provides an example of using the onpaperend event.

The ondrawerclosed event registers a callback function to
obtain a drawer close event. Its syntax is also Function ().
FIG. 141 provides an example of using the ondrawerclosed
event.

The ondraweropen event registers a callback function to
obtain a drawer open event. Its syntax is also Function ().
FIG. 142 provides an example of using the ondraweropen
event.

The following a discussion of some ePOS-Print-Canvas
API functions. FIG. 143 provides a list of some components
of the ePOS-Print-Canvas API.

The ePOS-Print-Canvas API object prints a print image
rendered in HTMLS5-Canvas and monitors the print result or
the communication status. A constructor for an ePOS-Print
Canvas API object is used to create a new ePOS-Print Canvas
API object and initializes it. The syntax is CanvasPrint(ad-

US 9,098,226 B2

37

dress), where “address” is an optional string that specifies an
address property (URL of printer to be used for printing).
FIG. 144 is sample code illustrating the creation of a new
ePOS-Print-Canvas API object.

The print method prints an image rendered in HTMLS-
Canvas. It converts a specified range in an RGBA full-color
image of HTML5-Canvas into a raster image data according
to the settings of the halftone and brightness properties. One
pixel in an image equals to one printer dot. When an image
contains any transparent color, the background color of the
image is assumed to be white. The print method has syntax:
print(canvas, cut, mode). Parameter “canvas” specifies the
HTMLS5-Canvas object to be printed. Parameter “cut” is an
optional Boolean that sets whether to cut paper. FIG. 145
shows examples of parameter “cut”. Parameter “mode” is an
optional string that specifies the color mode. FIG. 146 shows
examples of parameter “mode”. FIG. 147 provides sample
code to print Canvas(ID="myCanvas’).

The open method Enables status event operation. It sends
the status of the printer specified by the address property
using an event, and updates the status at an interval specified
by an interval property. It has syntax open(). FIG. 148 is
sample code illustrating the use of the open() method.

The close method disables status event operation. It has
syntax: close(). FIG. 149 is sample code illustrating the use of
the close() method.

The address property specifies the URL of the printer to be
used for printing. FIG. 150 is sample code illustrating the use
of the address property.

The enabled property retains the enabled/disabled setting
for status event operation. It is a Boolean type, and the
enabled/disabled setting for status event operation is retained
using the logical Boolean value. This is read-only, and the
default value is false. FIG. 151 is sample code illustrating the
use of the enabled property.

The interval property specifies the interval of upgrading the
status. The interval of upgrading the status is specified in
milliseconds. The default value is 3000 ms (three seconds),
and it has a minimum value of 1000 ms (one second or
longer). When an invalid value is specified, it is assumed to be
3000 ms, by default. FIG. 152 is sample code illustrating the
use of the interval property.

The status property provides the status of the printer. This
is the status last obtained from the printer. It is read-only, and
has a default value of 0. FIG. 153 is sample code illustrating
the use of the status property.

The halftone processing method specifies the halftone
property applied to monochrome (two-tone) printing. The
default value is HALFTONE_DITHER. FIG. 154 illustrates
some halftone properties. FIG. 155 is sample code illustrating
the use of the halftone property.

The brightness property is set using a gamma value. More
specifically, a gamma value in the range 0.1 to 10.0 is speci-
fied as a brightness correction value. The default value is 1.0.
FIG. 156 is sample code illustrating the setting of the bright-
ness property.

The onreceive event is a property that registers the callback
function and obtains a response message receipt event. It has
syntax: Function(response). The parameter of the callback
function include: a response as a parameter, response mes-
sage as name and object as object type. FIG. 157 shows some
properties of the response object. FIG. 158 shows value of
success. FIG. 159 shows value of code. FIG. 160 shows value
of status. FIG. 161 shows sample code to print Canvas
(ID=myCanvas), and to display the print result in a message
box.

20

25

30

35

40

45

55

38

The onerror event property registers the callback function
and obtains a communication error event. It has syntax: Func-
tion (error). FIG. 162 lists some properties of the error object.
FIG. 163 shows sample code to print Canvas(ID=myCanvas),
and to display the HTTP status code in a message box when
a communication error occurs.

The onstatuschange event registers a callback function to
obtain a status change event. It has syntax: Function (status).
FIG. 164 is sample code illustrating the use of onstatuschange
event.

The ononline event registers a callback function to obtain
an online event. [t has syntax: Function (). FIG. 165 provides
an example of using the ononline property.

The onoffline event registers a callback function to obtain
an offline event. Its syntax is also Function (). FIG. 166
provides an example of using the onoffline property.

The onpoweroff event registers a callback function to
obtain a non-response event. Its syntax is also Function ().
FIG. 167 provides an example of using the onpoweroff event.

The oncoverok event registers a callback function to obtain
a cover close event. Its syntax is also Function (). FIG. 168
provides an example of using the oncoverok event.

The oncoveropen event registers a callback function to
obtain a cover open event. Its syntax is also Function (). FIG.
169 provides an example of using the oncoveropen event.

The onpaperok event registers a callback function to obtain
a paper remaining event. Its syntax is also Function (). FIG.
170 provides an example of using the onpaperok event.

The onpapernearend event registers a callback function to
obtain a paper near end event. Its syntax is also Function ().
FIG. 171 provides an example of using the onpapernearend
event.

The onpaperend event registers a callback function to
obtain a paper end event. Its syntax is also Function (). FIG.
172 provides an example of using the onpaperend event.

The ondrawerclosed event registers a callback function to
obtain a drawer close event. Its syntax is also Function ().
FIG. 1734 provides an example of using the ondrawerclosed
event.

The ondraweropen event registers a callback function to
obtain a drawer open event. Its syntax is also Function ().
FIG. 173b provides an example of using the ondraweropen
event.

Preferably, the present invention further incorporates an
ePOS-Print editor. The following discussion describes how to
use an ePOS-Print editor in accord with the present invention.
This tool allows one to create an ePOS-Print API, and sample
code at will. The following ePOS-print editor may be used to
develop web applications in accord with the present inven-
tion.

Preferably, the present ePOS Print editor operates within a
web browser environment. It is preferred that the web browser
support HTML5-Canvas in order to make use of all available
print API method/objects. It is therefore preferred that the
web browser is selected from among the following (or simi-
lar) web browsers: Windows Internet Explorer 9 or later,
Mozilla Firefox 13 or later, Google Chrome 19 or later, Apple
Safari 5.1.7 or later, and iPad Safari in iOS 5.1 or later.

If desired, the ePOS Print editor is maintained in (i.e.,
stored and accessed from) a server, or an intelligent module
(as described above), or a TM intelligent printer. For example
to access the main page (i.e., “index.html”, or home page) of
present ePOS Print editor on an IP network, one may enter in
a web browser the editor’s network address such as: http://
[(Web Server IP address), or (Intelligent module IP address),
or (TM intelligent printer IP address)|/editor/index.html.

US 9,098,226 B2

39

Thus, if one has access to an intelligent module or TM intel-
ligent printer, either can function to provide text editing (more
specifically ePOS print editing) to create a web page appli-
cation with embedded print API, as described above.

Using the ePOS Print editor, one can describe the function-
ality desired for a customized ePOS-Print API or customized
ePOS-Print-Canvas by using a graphics user interface, i.e.,
GUI, to select the functions desired, and let the editor gener-
ate the necessary script code automatically. The editor may
also be used by using the GUI to “draw” or depict in graphical
form a stencil or layout of how a printout should look, and
again the editor may generate the necessary script code to
achieve the look and function of the desired result.

FIG. 174 provides a sample main page (i.e., index.html, or
home page) for an ePOS Print editor in accord with the
present invention. Preferably, the ePOS Print editor is
accessed via web browser 161 by entering the IP address of
the ePOS Print editor 195 in the address field 163 of web
browser 161. The main page of the ePOS Print editor includes
multiple tabs 1654 to 165/ that categorize the editor’s capa-
bilities by function type. For example, tab 1654 selects “Edit”
functions, which brings up a Main Edit area, or window, 167.
Tab 1656 provides “Preview” functions to preview how a
projectone is currently working one will execute. The API tab
165¢ may display model API code that may be built upon to
achieve a user’s needs. Alternatively, the API tab may provide
a selection of multiple, pre-defined print APIs accommodat-
ing common user needs. Still alternatively, “API” 165¢ may
bring up a window displaying script code for a current project.
Tab 165d is labeled “XML” and may be used to view and edit
XML print files. For example, if one is previewing a project,
XML tab 1654 may bring an XML print document of the
current project. Still alternatively, one may import an existing
XML print document for further editing. Besides showing
scripting code generated by the present ePOS Print editor, in
an alternate embodiment either of API tab 165¢ or XML tab
165d may further permit a user to manually edit the code. The
print tab 165¢ brings up print options to print the current
work, or to test the current work by generating a print-out of
a mock execution of the current code viewable on the screen
or sent to a connected printer. The Setting tab 165/ permits
oneto enter needed settings for execution, such as the models
of target printers, the IP address of the intelligent module or
TM intelligent printer, the device ID of a target printer, time
out settings, and/or option choices such as choosing whether
or not to monitor a printer’s status.

Main Edit area 167 provides a selection of different edit
function choices (i.e., selectable via function icons or soft-
ware “buttons”) that may be programmed into a print API in
accord with the present invention. These functions are further
sub-categorized.

For example, a first sub-category 169 provides the most
common operations that most print document may use. This
first sub-category is labeled “Common”, and includes func-
tions such as “Align”, “Linespc” and “Rotate”. The Align
function specifies a desired alignment for text and/or graphics
(such as left-align, center-align, right-align, and customized-
align). The Linespc function permits one to specify desired
line spacing in dots or in units of measure, such as inches
and/or centimeters. The Rotate function specifies a desired
rotation orientation for text and/or graphics. The Rotate func-
tions may be divided into fixed choices, such as 90°, 180° or
270° or may be user specified within a range from 0° to 360°.

A second sub-category 171 provides text-related functions
and is labeled “Text”. The Text sub-category includes func-
tions such as “Lang”, “Font”, “Position”, “Smooth”, “Size”,
“Double”, “Style” and “Text”. The Lang function serves to

10

15

20

25

30

35

40

45

50

55

60

65

40

specify a specific language for printouts. For example one
may select from among Japanese, English, Spanish, German,
etc. The Font function specifies a specific font from a library
of'installed font options. The Position function specifies how
far from the left border (or right border or top border or
bottom border [if printing on fixed-sized sheets of paper]) text
printing should start. As it is known, text may take on a
pixilated look depending on the size of a specific font choice.
The Smooth function removes this jagged pixilated look and
provides smooth edges to text. The Size function specifies a
size for specific text. The Double function provides a quick
way of specifying that specific text that should be printed in
double size. The Style function specifies a specific text style,
i.e., underline, bold, italics, color-invert, etc. The Text func-
tion specifies regions for printing specified text and/or speci-
fies the text to be printed.

The third sub-category 173 provides paper-feed-related
functions and is labeled “Paper Feed”. The Paper-Feed sub-
category includes functions such as “By Unit”, “By Line”,
and “LF”. The “By Unit” function specifies an amount of
paper feeding by unit of measure, such as dots, inches, and/or
centimeters. The “By Line” function specifies an amount of
paper feeding by number of lines (i.e., in per line increments).
The “LF” function provides a new line (i.e., increments by
one line in a manner similar to the carriage-return function
typing).

The fourth sub-category 175 provides image related func-
tions and is labeled “Image”. The Image sub-category
includes functions such as “Image” and “NV Logo”. The
“Image” function provides for the insertion of user-provided
images, and may also provide functions for a user to create
(i.e., define) a new image using drawing software tools
including basic shapes, such a lines, circles, rectangles, etc.
The “NV Logo” function relies on addressable images
already stored in a printer, and calls up a selected one of those
images by address, or local ID. That is, the address of NV
Logo images may be an ID code that identifies a specific
stored image within a local (i.e., internal) memory space of
(preferably) non-volatile memory within a printer. Typically,
NV Logo images are images of company logos, but they are
not restricted to logos alone.

The fifth sub-category 177 provides bar code related func-
tions and is labeled “Bar Code”. The Bar Code sub-category
includes functions such as “Barcode” and “Symbol”. The
“Barcode” function encodes linear barcodes (of user-speci-
fied type). That is, a user may provide information to be
encoded, and select the “Barcode” function to generate a
linear barcode that encodes the provided information. The
Barcode function may further include options such as size
and position of a defined linear barcode. The “Symbol” func-
tion encodes matrix (i.e., 2-dimensional) barcodes of a spe-
cific type, such as a QR Code. Again, the user may provide
information (text and/or graphic) to be encoded, and select
the “Symbol” function to generate a matrix barcode that
encodes the provided information. The Symbol function may
further include options such as size and position of a defined
matrix barcode.

The sixth sub-category 179 provides page-mode related
functions and is labeled “Page Mode”. The Page Mode sub-
category includes functions such as “Start”, “Area”, “Direc-
tion”, “Position”, and “End”. The “Start” function may
specify the beginning position of a page mode area, and the
“End” function may specity the ending position of the page
mode area. The “Position” function may specify a position
within a printing area where the page mode printing area
should be located. The “Area” function may specify a specify
area (i.e., 2-dimensional size) for the page mode area. Finally,

US 9,098,226 B2

41

the “Direction” function may specify an orientation for the
depicted contents of the page mode area. For example, if the
page mode contains text arranged horizontally, the “Direc-
tion” function may be used to print the same text along a
vertical direction.

A seventh sub-category 181 may group together all
remaining functions not included in the first through sixth
sub-categories, and is labeled “Other”. In the present
example, the “Other” sub-category includes functions such as
“Cut”, “Drawer”, Buzzer, and “Cmd”. The “Cmd” function
specifies commands to be sent to a printer. Assuming that the
printer is a POS printer having a paper cutter, drawer and
buzzer, the “Cut” command issues a command to cut the print
medium (i.e., paper) on which the printer prints, the drawer
option inserts a command to kick open the printer’s drawer
(may individually identify specific drawer latch connectors to
be actuated), and the buzzer defines a command for the printer
to actuate its buzzer in a specific buzzer pattern for a specified
duration and a specified number of repeated buzzing opera-
tions.

FIG. 175 shows the Setting screen resulting from selection
of the “Setting” tab 165/ of the ePOS Print editor 195 in
accord with the present invention. The Setting screen pro-
vides a printer-model field 183 to enter or select the model of
a target printer. Also provided is an IP-Address field 185 to
enter the IP address of the intelligent module or TM intelli-
gent printer. Device-ID field 187 receives the device ID of the
target printer, which may be an ID name assigned to the target
printer. In Print-Timeout field 189 one may set a timeout (in
milliseconds) for attempted print operations. Also provides a
selection button 191 to choose whether or not to monitor a
printer’s status. FIG. 176 provides a table summarizing some
of the options provided by the Setting screen.

FIG. 177 provides another, but smaller, view of the Edit
screen of the ePOS Print editor in accord with the present
invention. The present Edit screen is similar to that of FIG.
174 with the exception that FIG. 177 additionally shows an
Edit Area 193. Main Menu area 167 displays the available
functions, as explained above. One may “click an icon” (i.e.,
select a software button from Main Menu area 167) to add it
to the bottom of Edit Area 193. One may also drag (or move)
anicon to insert it anywhere in Edit Area 193. The location of
the icon within Edit Area 193 specifies the location (i.e., the
order) of the relevant code within the final script code file.
After placing a function icon (or element), one configures it as
needed. For example, if the NV logo is added to Edit Area
167, then it is configured by entering the key code that iden-
tifies the image to be selected. It is to be understood that one
may have multiple instances of the same function icon within
Edit Area 193. Thus, Edit Area 193 displays the functions
(i.e., elements) selected in the menu area. At any time, these
elements may be dragged up or down within Edit Area 193 to
change its order of execution. Each element is given an “X”
button at its right-side, and any element can be deleted using
its “X” button. An import option 197, ePOS-Print Editor can
import XML data stored in the past. The Clear option 199
deletes the edited details within Edit Area 193.

Selecting Preview tab 1654, as shown in FIG. 174 provides
a preview image. FIG. 178 shows a sample preview image of
the ePOS Print editor in accord with the present invention.
This provides a preview 101 of a printed document.

If a printer is connected, then an actual printing may be
made to test the code by selecting Print tab 165e. FIG. 179
provides a sample view of the present ePOS-Print editor with
the Print tab selected. Print tab 165¢ may be used to view an
XML print document of a preview image, or may be used to
import an XML print document. For example one may open

10

15

20

25

30

35

40

45

50

55

60

65

42

an existing XML print document using the Print tab 165¢, and
may save the contents of the XML print document, such as by
copying. The ePOS-Print XML document is displayed in the
Data to be sent (ePOS-Print XML) section. Selecting the
Send option sends data to a printer and performs printing. The
Information section displays the print status. Selecting the
Clear option deletes the content in the Information box.

FIG. 180 shows an import screen in accord with the present
invention. The ePOS-Print XML print document to be
imported is pasted and checked in the “Data to be import
(ePOS-Print XML)” section. Selecting the “Apply” option
imports the ePOS-Print XML print document. The informa-
tion section displays any import/needed information. The
“Close” option closes the import screen.

In a preferred embodiment of present invention, selecting
API tab 165¢, as shown in FIG. 174, provides ePOS-Print
sample code. FIG. 181 provides a sample view of the present
ePOS-Print editor with the API tab selected. A user may make
use of the sample code by copying it into their own code file
or Edit Area.

While the invention has been described in conjunction with
several specific embodiments, it is evident to those skilled in
the art that many further alternatives, modifications and varia-
tions will be apparent in light of the foregoing description.
Thus, the invention described herein is intended to embrace
all such alternatives, modifications, applications and varia-
tions as may fall within the spirit and scope of the appended
claims.

What is claimed is:

1. A method for creating a document in a web application,
sending the document to a printer, and obtaining a status of
the printer through a network, the web application executed
by a web browser, the method comprising steps of:

providing an intelligent module adapted to connect to the

printer, the intelligent module configured to be set a

network address, to receive the document over the net-

work, and to send the document to the printer;
embedding an application program interface (API) in the
web application, the API including:

(1) an address property-element configured to designate
the network address of the intelligent module,

(ii) a status event-element configured to check one or
more statuses of the printer, and

(iii) an open method-element configured to enable the
operation of the status event-clement;

setting the network address of the intelligent module into

the address property-clement;

using the open method-element to enable operation of the

status event-element and to receive a specified status of

the printer;

wherein:

the API further includes:

a first method-element configured to add commands for
controlling the printer into a command buffer, and
creating document according to commands in the
command buffer; and

a second method-element configured to send the created
document to the intelligent module over the network;

the method for creating a document in a web application

further including the steps of:

creating the document by use of he firs method-element
embedded in the web application;

sending the document, by use of the second method-ele-

ment embedded in the web application, to the intelligent

module having the network address designated by the
address property-element; and

US 9,098,226 B2

43

having the intelligent module send the received document

to the printer.

2. The method according to claim 1, wherein the API
further includes a close method-element configured to disable
the operation of the status event-element, the method for
creating a document in a web application further comprising
a step of using the close method-element to disable the status
event-element.

3. The method according to claim 1, wherein the API
includes an interval property-element specifying a time inter-
val for spacing the upgrading of the status of the printer, the
method for creating a document in a web application further
comprising a step of setting the time interval into the interval
property-element.

4. The method according to claim 1, wherein the API
includes a status property-element specifying the status last
obtained from the printer.

5. The method according to claim 1, further comprising a
step of setting a device identification of the printer, wherein
the address property-element is further configured to desig-
nate the device identification of the printer for which the
checked status is to be received.

6. The method according to claim 1, wherein the web
application is maintained in the intelligent module, and the
web browser accesses the web application from the intelligent
module.

7. The method according to claim 1, wherein the web
application is maintained in a web server, and the web
browser accesses the web application from the web server.

8. The method according to claim 1, wherein the one or
more statuses include a status indicating whether the printer is
online or offline.

9. The method according to claim 1, wherein the printer has
a cover, and one or more statuses include a status indicating
whether the cover is open or closed.

10. The method according to claim 1 further comprising a
step of the printer printing its received document on a paper
medium in the printer.

11. The method according to claim 10, wherein the one or
more statuses of the printer checked by the status event-
element includes a status indicating whether a supply of the
paper medium is ended or nearly ended.

12. The method according to claim 1, wherein:
the printer has a drawer; and

one of the commands for controlling the printer added to
the command buffer is a drawer-kick command for
instructing the printer to kick open its drawer.

13. The method according to claim 12, wherein the one or
more statuses of the printer include a status indicating
whether the drawer is open or closed.

14. A non-transitory computer-readable medium encom-
passing computer-readable instructions executing the method
of claim 2.

15. A system for creating a document in a web application,
sending the document to a printer, and obtaining a status of
the printer over a network, the web application executed by a
web browser, the system comprising:

an intelligent module adapted to connect to the printer, the
intelligent module configured to be set a network
address;

a web server connected to the intelligent module through
the network, the web application maintained in the web
server;

10

15

20

25

30

40

45

50

55

60

65

44

an application program interface (API) embedded in the
web application;

the API including:

(1) an address property-element configured to designate
the network address of the intelligent module,

(ii) a status event-element configured to check one or
more statuses of the printer, and

(iii) an open method-element configured to enable the
operation of the status event-clement;

wherein the status of the printer, designated by the status

event-element, is sent from the intelligent module, des-

ignated by the address property-element, to the web

browser after the open method-element enables the

operation of the status event-clement.

16. The system according to claim 15, wherein:

the printer has a cover; and

the one or more statuses of the printer include a status
indicating whether the cover is open or closed.

17. The system according to claim 15, wherein the API

further includes:

(1) a first method-element configured to add commands for
controlling the printer into a command buffer, and for
creating the document according to commands in the
command buffer, and

(i) a second method-element configured to send the docu-
ment to the intelligent module over the network;

wherein the document is created by the first method-ele-
ment and is sent by the second method-element to the
intelligent module having the network address desig-
nated by the address property-clement.

18. The system according to claim 17, wherein a drawer is
connected to the printer, and wherein one of the commands
for controlling the printer added into a command buffer is a
drawer-kick command for instructing the printer to kick open
its connected drawer.

19. The system according to claim 17, wherein the one or
more statuses of the printer include a status indicating
whether the drawer is open or closed.

20. A non-transitory computer-readable medium encom-
passing computer-readable instructions executable by at least
one computing device to perform a method for creating a
document in a web application, sending the document to a
printer, and obtaining a status of the printer through a net-
work, the web application executed by a web browser, the
method comprising steps of:

providing an intelligent module adapted to connect to the

printer, the intelligent module configured to be set a

network address, to receive the document over the net-

work, and to send the document to the printer;

embedding an application program interface (API) in the

web application, the API including:

(1) an address property-element configured to designate
the network address of the intelligent module,

(ii) a status event-element configured to check one or
more statuses of the printer, and

(iii) an open method-element configured to enable the
operation of the status event-clement;

setting the network address of the intelligent module into

the address property-clement;

using the open method-element to enable operation of the

status event-element and to receive a specified status of
the printer;

US 9,098,226 B2

45

wherein:
the API further includes:

a first method-element configured to add commands for
controlling the printer into a command buffer, and
creating the document according to commands in the
command buffer; and

a second method-element configured to send the created
document to the intelligent module over the network;

the method for creating a document in a web application
further including the steps of:

creating the document by use of the first method-ele-
ment embedded in the web application;

sending the document, by use of the second method-
element embedded in the web application, to the intel-
ligent module having the network address designated
by the address property-element; and

having the intelligent module send the received docu-
ment to the printer.

#* #* #* #* #*

10

15

46

